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Preface

Part of the activity of the School' Mathematics Study Group

(SMSG) is diVoted to the preparation of experimental mathematics
7

textbOokfOr-secondairy schools. This set of notes, the third in
. t 6 ,4

a series, is intended to explain the approach adopted by the writers f
-:/

of the tektbook First Course in Algebra (SMSG-F). It is expected (

that these notes may be used in the Summer of 1960 by teachers who

rare studying SMSG-F and who are familiarizing themselves with hew

teaching materials in algebra.

It Mist be understood that thi=e, book is not a ninth grade, text:

book or a teacherls'commentary. The ideas presented are far too.

difficult for nest beginning students, but these are ideas which we,

believe teachers should master., The terminology and notation are

the'same a.4 but the topics do not closely parallel, those of the

SMSG:-F textbook; hence, it is unsuitable as a. manual. he notes delve

into the foundations of algebra, the structural prbperVies of ele-

mentlary algebraic systems,'but are not concerned with the routine

1
,skilld and manipulative aspects of algebra. It is assumed that the

teacher is already a masAr of these skills.
IS

In sho. rt, this book,is not designed to explain hOw one shOuld

teach .qie tisd,p materialS' but rather to.ekplainwhat is ritby
,

.

\
...:, .

'Ylodern al ",'what conce'ts lingierly the SMSG-F materials, and

what is 1 e spirit of the materials. It is balieved that a*.teacher

6



who understands these underlying concepts will be able to use tlIg

textbook effectively and tootimulate mathematical curiDsity in hiS

students.
4 - t

In particular, it soulebe pointed out that these notes are
. A

.not Intended for an abstract algebra course, since they are geared

directly toSMSG-F.

The instructor of a summer course for teachers will probably

find that chapters 2-, 3,.4 and 6 form the heart\of Vie study. Chap-

ter 1 can be read quickly as an introduction, but Chapter 5 may be

rough sledding. 'Certain readers may want to read only the summary

results of CAapter,5, and other may be challenged t low the

41 )

proofs in detail and try their hands at the probleMs. In ci pter

2 WO discuss-the questions, "What is a proof?" and '"Why bother=
.t

with proofs in4algebra?"
.

4 ,,

,
.It issin Chapter 3, that the teacher comes to grips with the '

,
.

. .

.

. structure of algebra. Here we postulate a system called an ordered
.

field (the set of.real numbers is the most familiar model of this

system) and study-ts properties% Theorems ,marked with a star *_

ef are left to,the'reader for proclf; these'are.eisential t6 the devel-

.
opment

.

and should be regarded as strongly recommended exercises.

Then iri Chapter 4 the various subfiel ds of the rear Mumhers are
.

. .
,

.

...
, . .

. , .

examlned, putting the in perspectiv6- with each other and with the

reals. In Chapter 6 we summarize the relations, operations and ex-
. ,

pressi4ns of`algebra by unifying them under the concept oc function.

The outline for these notes was drawn up and the resulting
.

.
manuscript w s read byva, advisory committee consisting of:

C.W. Curtis, University of Wisconsin,

B.J. Pettis, University of:North Carolina,

7
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"-A

H.O. Pollak, Bell TelephoneLaboratories,

"A C.E. Rickait, Yale'Uhversity..
*

The author is indebt*ed tp this committee for its many valuable

suggestions.
.1

The'instructor should feel flee to cdhsider topics in any

order and to supplement with ideas and probleris at will. No

attempt is made (or:intended) to freeze the approach to

elementary algebra in the present mold. There is a healthy

debate going on as to the best way to design a first course in

- algebra. It is hoped that some readers will learn enough about

the Issues so that they can.enter the debate on one side or the

other. With the goal of superlative teaching and learning of

algebra in the schools; the reader is invited to convey his

comments and, criticiftlis to

School! Mathematics Study Group

Drawer 2502 A Yale Station

New Haven, Connecticut

r
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,Chapter 1

HISTORICAL BACKGROUND

1. elassicalAlgebra. What is the genesis of the school book.

algebra as it is now taught in our Schools? How does it differ
, . .

from., "modern algebra" of 20th century mathematics? In,what re-
.

speats
m
have the two parted company, and wty?, We might find answers

tO,these questions in a.;short historical' sketch.

Soinewhere in the haze of pre-history a pasbage was made from

the coiciete to the abstract. The id(a of , "two" as a characteris-

tic of each pair of objects must have taxed the primitive mind,

Apt as it eludes' the mind pf the very young child.

Numbef sense came slowly. -Ks systems of notation were inven-
.

ted, the meaning of number became clearer. Histories 'of mathema-

'\.

tics* trace this deVelopment along with a gowing sense of spatial

form, through the early emergence of arithmetic and geometry in

1

* CF.' D.E. Smith, History of Mathematics, Ginn, l92)3);- E.T. Bell,

The Development of Mkthematics; McGraw-Hill, 1940) D.J. Struik,

A'Conbise History of Mathematics, Dover, 1948; or other historiei

.by Cantor, Hofmann, Eves, etc.
1.1

9
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1.2

Sabylon and Egypt, to the amazing Greek period of deductive reason-'

tng in geometry and the invention of some algebraic symbolism by

the Hindus.

Somewhere In this fumbling for satisfacti9n of man's curiosity

about numbers, another step was taken. Certain symbols, or

numerals",had already been used to stand for certain numbers,

° such as the Persian notation of j for "one", r for "two", f4/ for -

"three", etc. If a number, not known, was observed to have certain

relationships to known numbers, this fact could be described by

representing the unknown number by still another kind of symbol.

Consider the problem: some number symbolized by oL. is such that

at. multiplied by oc and then diminished by I yields pu. ; what num-

.
.

!
.

ber is 404. ? The solution of such a'probIem, the bringing together

of the known and unknown parts, was called al- ebr in Arabic, and

-algebra in. medieval Latin, meaning "reunion of parts."

Centuries later, European mathematicians mould.. write tgis

problem in the,form of an qquation to be solved:
. ,

x 2 - 1 = 3.

But having found one root, 2, they were momentarily satisfied. It,

wa8.not until after 1600 A.D. that -2 was reluCtantly given the

status of a number and admitted a8 another root.

The more generlal quadratic eqUation

x2 + bX.4- c = 0,

where b and C are any rationalntmbers, was "solved" in 1519

1 0

o.



1.3

124

by Ferro of the University ofBolpgna (and as early as the 9tM

century by the,Arabs, it is believed). The cubic and quartic equa-

tions were "solved" before 154:5 by Tartaglia, Cardan, and Ferrari

(leading to a dispute as to whether or not Cardan filchea the

procedure from Tartaglia). None of these solutions inferred any

understandine.of negative or imaginary roots.

We must stop here and examine the meaning of "solution.".

Among the possible numerical values of the variable ,x, one which, -4

makes the equation a ,true sentence is called a root of the equation.
. ais

"Solving" an equation then means finding the seat of all roots of

the equation. To mathematicians of the 16th century there were two

distinct meanings.

c4 Approximate solution., Given the numerical coefficients
)

of the equation, construct a numerical approximation to a root of
.

thee equation either by geometric consructionor'thy successive

refinements of an original estimate of the root*. TheChinese are

believed, t6 have effcted approximate solutions as early as the 13th
.. q 7'

century, Such a solution is always possible fort po/ynomial equa-

tion of any degree, if it has a root, and this fact is of immense

importance to applicatidhs.

* For example,

is aDproxima+ (.6)
.68 because
. .019, etc.
examples of

4

we estimate that a root of x3 + - 1
tely .7 because (.7) + (.7) - 1 = :043 and
- 1 .7, -.184. This suggests the rofined estimate
(.68y(.6 + (.68) , 1 -.006 and (.6;ii (69).- a
Horner4s method, Newton's method, anu others, are

such approximate solutions.
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1.4

Solution, by radicals. Given the ratl.onal, coefficients

of the equation, say, and given the set of operations
<11..

+, x, -, i, and extraction of roOts,,cOnstruct by means of a finite

number of these operations all expressions in the coefficients which,

satisfy the equati'On.- Thus, the quadratic

.--%
x
2

-1-'10x + c = 0

can'be solved by radicals, because the expression in b,c,

-b ±-1b2 - ;-

. 2

.

satisfies the equation and is constructed by means of only a finite

number of elementary operations on b, an c.

It was in the sense of solution'ty radicals that Tartaglia

and' Ferrari solved the cubic and the quartic, respectively**. Their

solutions were sheer monuments of ingenuity, for-there were no

underlying principles on which they proceeded. Immediately there

began a flurry of effort to solve the quintic.' It was perhaps

natural (although incorrect) to suppose that a solution of the

41.1intic by radicals awaited the man clever enough to discover it.

But ingenuity could not prevail, and throughout the 18th century

,

the problem of the ,quintic remained uneolved.

** The cubic.x3 + ax2 + bx + c = 0,is solved b7 substituting
y - (a /3), yieldingthOredUced cubic yi + py + q = 0. Thgn

the substiktution y = z - (p/3greduces this to

z6 +\qz3 - (p3/27) = 0, which is a quadratic in z3. Thus, the
cubic is reduced to a'quadratic.. The quartic is solved by re-
duction to a cubic. See a text' in theory of equations, such as
L.E. Dickson, First Course in Theory of Equations.



1.5

In the meanwhile some mathematicians were beginning to examine

the methods of constructing solutions-. For example, in 1770

Lagrange showed that the method 14ed to construct solutions of the

w.

quartic by radicals could not be extended to the solution of the
0 00

quintic. There the matter stood untie.E324-.

In summary, at the, beginning of the 19th century algebra con-

sisted.of a set of,rules and devices for performing formal opera-
A

tions 911real numbers and-symbols represepting real numptrs

(manipulations of,algebraic expressions), solutions by radicals Af

.polynomial equations up to the fourth degree, and approximate.

solutions of polynomials of any degree. This we think of as

,classical algebra; it is the algebra presented today in traditional

elementary textbooks.

2. Transition to Modern Algebra. There was a growing suspi-

cion at the beginning of the 19th century that the quintic may not

be solvable by radicals. Possibly there was something inherent in

the structure of the read. numbers which made ,the quintic essentially

different from the quartic.- Then'in 124 a Norwegian, Niels

Hendrik Abel, proved that it is iiiipOssible to solve thd general

quintic by radicals. And in 1830 the Frenchman, Evariste Galois,
'

, 0

discOvered necessary and sufficient conditions tor the .solution by

radicals of arty polynomial equation. At first.thought, one might

be-tempted to unde5ptanq.the pregious sentences to mean that every

possible device for solving the quintic was tried anti found lacking
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-- heice, a solution is impossible. But

'number of operations allowed, afr n

always an (n+l)st operation possible.

since there are a finite

'such operations there is

Thus, Galois and Abel could,

not have exhausted every combination of operatlions- ".

Instead, they searched or properties (characteristics, de-,

scriPtions) of the equations which isolate the nature of the

equations independent of the specificnumerical coefficients._
:

Galois set for himself the general problem of determini.ng whenan

arbitrary polynomial equation with rational coefficients could, be
4

solved. by radicals. He' gave a complete sdluion to this prole

as an
o
applicAtion of a'general theoryof "groups". (We sh

examine what im meant by a "group" of elements in'the next section.)

Differences in groups were found to depend on the relations among

their efements rather than on the elements themselves.- Thus,

Galois could then make statements about roots of equations, by

noting properties of certain corresponding groups.

At this point we shall not try to, explain how Galois

construct crgroups corresponding to equations. point is that1.41

a break 1 ;d been .e- om the classical algebra. It was finally

realized ore could be learned about the nature of algebra

by studying the structures of mathematical systems, suchas groups,

than by trying more manipulations,on more symbols with more

operations".

3. Structure. In the 'preceding paragraph we used44everal nevi

.
words when we indicated that a "group" is an example of a

"mathematical systet" whose "structure" needs to be studied.

Before defining these words, let us gain some preparatory

14



1.7

experience with the ideAs'nvolved.

. Consider the set of:four integers (0,1,2,3). (Notice 'that -

thethe word "set" has the usual meaning of collection, class or
r.

aggregate of-elements; we usually indicAtd,a_set of eleMents by

enclosing the elements in brackets.)k-Sglect any element of this

set, say 3, and then again select any element, say 2. Now let us.

s?...?

4 associate with this ordei,ed pair of elements a nuiritrer in,the

1 3

following way. Determine the sum of 3 and 2, divide the sum by
t . i -- .

four, and find re remainder. Let us indicate this result by
. /

writing
,

-

0 1.

(We use "." to mean that the-symbols "3® 2" and "1" represent the
..,

same element.) In 'the same way

2. 3, 2®2 0, 301, et'c.

'Here we have defined a binal,y operation-CD on.orc red Pairs of

elements of the set (0,1,2,3); we say.

.

a binary operation on a set is a rule, whereby to

each ordered pair of elements of-the,set there
,

*corresponds exactly ore, element.

For the above example we can show-all the results of the

operation In in tabular formr-

1

.3

1. 2 3 it

1 1 2 3 0

2 2 3 0 1

3 0 1 2 ,

a'.

1.5



1.8

where,, first lement is chosen from the left column, the second

element from the top row, and the result of the operation in the
,

corresponding row and gollmn of the table.,

, If the operation associates with each single element of a set

exactly one element, we say the operation ig-unaltr, Paniliar

examples of binary operations are ordinary addition and multipli,7

. cation; some common unary operations are dquaring and doubling.

The above set (0,1,2,3) with the operation ED is an example

of a mathematical system.

1-

,A mathematical system consists of a set of elements

and one or more operations on the elements.

If:we denote the set (0,1,2,3) by the letter T, then the above,-

mathematical system may be denoted by (T, C0).

Let us examine some of the propetties of (T,C0).. ($y_

property we mean a relationship among elements and 'operations which`

is true for all the elements.)'

1) The first thing we notice is that every entry in the table,,,i8

an element pf T. More precisely, if a,b are any elements.

of T, then a0b is an element'of T. We say in general

that

a set S is closed der a binary operation * if

for any e4Ments x,y in S, ,x*y is an element S.
Ari

.7;

, 2) We also notice a symmetry in the table. This is the result

a property of e that can be described as followd: if a,b

are any elements of T, then ,a Ob = baa,, We say that an

operation having this property is commutative.

1.6
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3) The reader should verify that the binary operation GI is also
.

, associative; that is, for any elements a-,b;c in T,

a0+ (b®+ ( a '0 ) t) c.

Among the elements of T we call the element 0 an identity

element for ED because 00a= a00=a for any element

as in T. That is, anyielement of T is'left unchanged when

operating with the identity. In general,

an'element i of a set S is an identity for the

operation * if x*i = i*x = x for every x

in S.

Insteqion of thetable shows that each row and each column

cdntains,the identity element exactly once. This follows from

the fact that each element of T has-an- inverse Under :

to each element a in T there4corresponds an element b

T such that a0b = 1)0 a ='0. In general,

,

if i is the identity for the.opei-ation *. in a set

S, then x and 'y are inverses under * if

- x*y = y*x 001

Of course, in a system theeelements may be any objects

whatsoever and the operations completely arbitrary. Algebra is

a concerned not with the elements or the symbols for the elements

of a system; it is interested in the structure of the system as

described by the basic properties which its operations pesess.
,

The 0.ements'Of T* are quite e4sioecific in our. minds: the

integers 0,1i?;3. The operation (i) is also specific becase it

involves tpe fami,liar,4-oPerations of addtion and_ dividing by 4.

a



1.10

The resulting s tem (T, e) therefore has properties which are

not surprisin to us; in fact, we are led to these properties by

our intuitive notions, about integers and about addition and dividing

by 4. To avoid the prejudices of intuition let us try to forget the
st

- - ,

,-. --,,
-:::,./.. meanings of 0,1,2,3 and'.'-(.9-. Instead, let us write, respectively,

4.:-.0
.

.

*k.

s,m,t,r
.

and *. Then the table looks like this.

m t

s s m t r

m m t r s

t t r s m

r r s m t

The resulting.system is abstract in the sense that the symbols are

undefined and the operation 1, has no m6aning other than that

given by the table. ,Let us call this the abstract (S,*) system.

Relieved of our pre-set ideas,aboUt,tntegers, we might be able

to discdver hidden properties of the (S,*) syslAm that are inherent

in, the table. Then since the table for (T, (i)) has'exactly the
,

same form as the table for (S,*), that is, the systems have th@

structure, what we discover about i(S,*) must alho be true

o (T, 0) ) . In this way we may discover properties a a .

..--t

familiar system that weypever suspected through `the device of
.., i

stUdying the structure.4ya0 abstract system._:

I

----,

--Al.i: ,
:

We say that t

c)::::
.4';e641111:1n:

osythseterinmod(rels? :orilrom::lm::eryeby
..-1 ,t- a straa system ,
'A

g ving other specfiqc.meaningA to s,m,t,r 'and *. Thus, a systems

may admit.0 many different models, each with the same stl'ucture as

__the_system_ i3 ch, is modeling. But two systems are differ?

18
se
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A.,..only if their ,structures are different.

This connection between systems, models, and structure can be

further illustrated by more elementary examples. It is easy to

invent an abstract system by choosing any set of elements, writing

out a double entry table and filling in the cells arbitrarily with

eleNents. Then an operation o is defined from the table by'

letting xoy be the element in row x and column y.

But the systems that people construct are usually chosen

because some specific models of the system haveiippeared elsewhere

in mathematics, in physics,- or in some other field. As an example,

let a set have two elements: a, "the action of reversing an

electric switch," and b, "the action of not reversing,the switch." ,

If the operation o is defined so that X o y is the action which
r- 4A

has the same iesult as performing aotfictra, ,x-andt-hpn.-:pefikorirting
i

action y, then the system is de cribed by the table: (

'ik

.o

I
a b

a

b

b a

a b

Note that a o a means "reverse the switch and then reverse it

again," which has the same result as b, "not reversing the, switch."

In the same way, a o b = etc. This switching system has the

--- same properties that we observed before. For example, in this

system the binary operation o is commutative; that is,

x,o y = y,q x
H

for any re lacement of x and t by a or b. The reader should

_decide whe her the operation is also associative, that is, whether

-x o, (y 0 z) = (x o y) o z:

19



AA 1.12

t is interestinikto note that, b .is an identity element for .o,

.

i this syStem, becaus' it

boa=aob=a and bob=
Does =very element of this system have an inverse under o ? What

is the verse of a-under o ?

klot er simple system can be constructed out ofthe arithmetic

of odd and =ven integers. Let . , 0 be the elements of the set,

..and-let the operatio define4by the table:

(An even integer adde

E C

E °

-0- -a g,s_

to,aA.n even integer yie ds an even integer,

etc. Here .the Operatioi, + is not quite the e as the usual

addition of numberskcWor are, E 4nd 0 themselves; they

are symbols for, classes of numbers. Ti eqUation\ E + 0 = 0, for

example, means.that the s,." _any.eveh and any odd' numbers is

some odd number.) I. 44 left for the reader to verify that the

properties of t y -m are exas,tly the same as those of he

system of switching act

, These two systems real'. are two different models of on

abstract system consisting ofia set of two elements and one b nary

operation defined by:

f

e f

e f



1.3,3

Where e and f re arbitrary symbols for the elements and 4"

for the binary/pperation. What is ,of algebraic cone rn here is

not that the elements and operation scan be given various physical

or numerical interpretations (although.this is interesting), but

rather that' he three tables have identical structure. Hence, '

whatever properties we discoVer in the abstract e,f- system

are guaranteed to hold for any model of the system.

The abstract systems we,used as examples were selected to

illustrate the type of abstract system called a group.

Given any set. S of elements and one binary

operation * on elements of S, the system (S,*)

-'is a group if it has the following properties:

(1) For'any elements x and y in S,4\x*y is

in S. (S closed under *.)

(2) For any elements x, y and z it S,

x*(y*z) = (x*y)*z.

(* is associative.)

(3) There is dh element i in S such that

x*i = i*x =

for every,x min S. (There is anDidentity

t.for *.)\
.\ 0

,

,,(4)--Corresponding to_ each element 'x in ,S there

is an ele nt x' iin S such that

x*50 = xt *x = i.

(Each eleMent has an inverse unter *

21
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Thus,'the.fijat system weitudied, (T, CO, is a/group;

it also has theadditignal property o'f commutativity and is called°

a coffimutative, or abelian, group. The systemconsisting'of the

set of all integers and the binary opeFatiolpf addition is also

an abelian group:as. the reader shoUld verify. On the other hand,,

. the.syStemicdnsiSting,of the set of all integers and the ope'ation

of multiplication is-not a group; it lacks AVene of the required t,

properties. (Which one?)

ts

Later we shall encounter systems with twobinary.operat'iOns,

such as a ring'(ee Problem 8) and a:field (see Chapter 3). The'

study of` the propeities of'a field is central to the understaffding
on. IP

of elementary algebra. s.
.

In a rough sort of speaking we can say that before the 19th,,.,
. .

century, mathematicians were concerned with finding specific -1"

entries in tables (studying models, particularly numerical models)
. ,

This activity took theform of operations on complex combinations
.

of elements, usually algebraic expressions. Since that'time most

significant discoveries have been made in algebra by studying the

structures of abstract systemZ without regard for the models

suggested. Itis almost paradoxical that the latter approach
'r

turns out to be the most "practical" in every sense of the word.

2 2
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Exercises

0)elements (E,

Operations +, x defined by:

+ E 0 x E

F o

0 0 E 0, E

and the binary

0

E

Show that the operation x is. commutative. Is there an

identity element for x in'this set? 'Determine whether

x is,distributive through *+, that is, whether

o
x x (y +*z) (x x y) +,(xX.z)

for any replacements. o,£ E or J) for x, y, z. Is +

distLbutive through x )10

2. Consider -the system consisting of the set of elements

(ri s, t) and

the tattles :

o

the binary operations
-

r . s r

r r s t

s t r

r

s

t

r

t t r '45 t s

\Is'the set closed under o? Under *?

o, * defined by

ti

sit
s r

t s

r, t

f

Is theoperation t

commutative? Is * commutative? Is-there an identity for

o? FOr *? Is o distributi8through if?. Is *

distributivethrough o? Does every element have an inverse

- under O1
!?.t

ri

23
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3. Let the elements of a set of actions be:

A: rotating.an equilateral triangle 120° clockwise
'about its center in its plane

B: rotating the equilateral triangle 240° clockwise
about its center in its plane

C: riot rotating the triangle.

Let x o y be the action whiq has the same result as first

performing action x and then performing action y.

Construct a table showing all results of the operation.

Does this set and this binary operation form an,algebraic

system? if so, is,the set closed under o? Is the operation,

o coMmutatiVe? Associative? Is there 4n-identity element

for the operation? Does every elemqpt have an inverse under

o? Is hissystem grOup? coMmunative group?

Consider a set of four actions .ohsistIng of the four

rotations of a square analogous to-those of a triangle as

described in Eroblem IBS the resulting system a group?

A commutative group?

Consider the set (1,2,3,4) and the operation defined

as follows: for any elements a,b' in-the set, a0b

the remainder upon dividing the product of a and b by 5 ,

For example, 3 04 = 2, 404 = 1, etd.' Is the resulting 1,

system a group?

21
1$ 1 LI
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Determine whether the set (a,blc,d) 'and the operation

*as defined by the following table, is a group%

a .b c d

a b d a c

d c b a

C. b c d

d c a d b

If not,. what properties are-lacking?

7. Determine whether the set (r,e,u,v) and the operation ++,

as defined by the followingtable,is a group.

-14 s u v

r

u

r s u v

s r

u v p r

u s s

If not; ighat_properties, are lacking?

8. If (8,*). is a commutative group and if o is another

binary operation on. elements of S such that o, is
o

01-

associative and o is distributive throtgh (see Problem 1),

then'the system *'(S,*,o) is called a ring. Is the set (E,O) '

and the operation

\

X, as defined in ProOtem 1, a ring?

2

,
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9. Consider the set I of all integers and the operations of

ordinary addition + and multiplication x. Is the system

(S,+,x) a ring? In this system, is there an identity fdr

x? Does every element of I have an inverse under x? Is

it a commutative ring (that is, is x commutative)'?

10. Consider the set (0,1,2,3) and the operdtionse, ()

defined on this set'as follows:

a Ob is, the remainder upon dividing a b, by 4,

8.0 b is the remainder upon dividing ab
.

by 4:- 4

Decide whether this system is a ring. A coMmutaive
i
ring.

.

.11. Prove that the identity element of a groUp (S,*) is un:Lque.

(Assume two differen\identities for say i arid- it,

and show that this assumption leads to a contradiction.)
. '

A
12. Prove that for a given element_ x of a group (S,*) there

is a unique inverse under *.

(13. (a) Do the even integers form a group with respect to addition?

% (b) Do the odd integers, form a group with respeqt to addition?

4
(c)r

At.

Do the integers of the form 5k, where k is an integer,
. .1

form a group with respect to additiQn?

(d) Let a*b = a - b, where a,b dre integers. Do the

integers form a gKiOup with respect to 4°.)

(se) Let. a Ob be the remainder upon dividing ab by '4,

where a,b are in the sett (1,2,3). Does this ,set form.

a group with respect to C).?
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4. qeaching of Algebra. It is unfortunately true that the

description of a specific model of an abstract systemibrinis little

understanding of the system. Younmtudents learn many facts about
,

, ...z....- .

real numbers -- this is an important part of their eduCations -- but

these facts in themselves bring little understanding of the real

number system.

Even though the break-through to modern algebra came'a hundred
A

years ago, for most school children the word "algebra" still means

a collection of isolated trickS -- to each situation a device for

handling it. The standard textbook is full of symptoms of this

There are, for example, boxes which emphasize the "how to", or hands

pointing to the rule that must be remembered. SomeStudents see for

.themselves a bit of the structure underlyinethese tricks. And

others enjoy the sheer tun of' getting the right "answers" to the
y'

manipulations. But for the vast majo,rity it is a matter of memoriz-

P
ing a set of symbolic commands, often in the tom of "four` step"

'methods or"rules Of signs", etc. /I

/

Fortunately,, the algebra curr ntly taught in the schools-:is

.for the most part mathematically portant. The student does need

the skills of "symbol pushing" for his later mathematical studies.

Hence, it should not be the'aim f a new Program to owhaie...thiA
4

content drastically. The point, however, is that every bit of manip-
f

ulation which we teach, andithich,thestudent must be able tg.do

valid for a reason. There is a mathematical truth about, say, real

2 7
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numbers, or about polynomials, which is behind every symbol we push.

And we need to teach these truths to make algebra meaningful and

exciting to the student. Thus, a new program must aim not only at

the usual skills but also at an understanding 'and appreciation of

the structure of the real number system, and to a lesser

extent, of polynomials. A multitude of exercises is still absolute-

ly necessary for gaining manipulative facility, but these techniques
_ -

must be tied to the ideas from which they derive their validity.

The writer of new materials and the teacher of these materials

must ask the queitions: (of himself, not his students) What is the

4
abstract system of which the set of real numbers ith.addition and

multiplication is a model? What are the structu a properties of

this system? How do these properties 'iV,ate and- unify the solu-
i,,

,..
-tions of-equations and oper4t1ons on algebraic expressions and

,functions? We shall try'."to4rovide some answers in succeeding

chapters.

The teaching of algei5raAlletonly must give the student a glimpse

of the structure of the subject but must also treat the language

with great care. Statements which record the pr-nerties of akmathe-

matical system, depend on concise language. difference between

'"and".and "or, "if" and "only if", "not 'l and "none", etc., can.Men

the difference between understanding anclmisunderstanding. MOre of

these matters in Chapter 2.
4 ,

Language also involves choice of descriptive words. Unlike the

28



'cheftiStf who uses long compound words to describe his material's,

the mathematician often selects Common words to describe uncommon con-

cepts'. The teacher should beware .Of dictionary meanings for words

such as rational, reel, imaginary', complex, group, ring, field,

limit, term, factor, domain, range. When these words are used as

e
mathematical terms,they do not havelthe meanings commonly ascribed

to them,

5. A Program for Elementary Algebra. This study is designed

to explain what the writers of the SMSG-F (First Course in Algebra)

'

had in mind and What teachers should keep in mind as they teach the

F materials.
-

We shall be concerned with the precise structure of an

abstract system called an ordered field, because,this system has

as a model the real number system. Then we shall diS'Oect this

system into subsystems and examine each in search of isitelations

to the system and:to the other subsystems. In this KW we may begin
.!

to see what. under)ies elementary algebra.

2 1
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Chapter 2

LANGUAGE

a. Sets. Much heat has been generated in arguments concerning

the role of sets in teaching elementary algebra. Some would con-

sider a 'course in algebra to be Niodern" if it mentions the word

"set"; others maintain that sets are an unnecessary confusion..

,Let us take the piddle road and agree that the study of sets

for their own sake probably does not belong in an elementary

course. On the other hand, the, simple language of sets can greatly

enhance the flow and increase the,interaction of topics in algebra.

A set is a deceptively simple concept: It is merely a collec-

tion of objects., The objects, or elements, in a set have at least

one common charagteristic -- the characteristic-of belonging to the
C

same set. This is not double talk. For example, if-the set is "MY

family", it is significant to say that a person x belongs to my

family. The set of integers

(2, 4, 6, 8)

has four elements each of which happens to be an even integer, But

these four numbers constitute a set merely because they have been

2.1
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-- listed together. The 'point is that often we'are concerned with a

.r
2.2

OW

Set rather than with its individual elements. Thus, a line is a

set of points, but we may think of the line as one entity, or even

as..an element of a set of lines. In fact, much of mathematics deals

with sets of sets of sets of sets

Just as it is.possible to describe a number with various names,

such as

5 - 2 = 3.. 2 15-

so it is possible to describe a set in different ways:

(2,4,6,8)'. (4,8/6,2) .77 A: the set of even posiAve-

integers less than 10 = B: the set of positive multiples of 2

which are less than 9.

The "=" sign means "is" in the same sense that

"6

2

"6
means

2
is the same number as v75-";

and for sets A and B,
4,

"A = B" means "A is the same set of elements. as B"

If a sett A is described by listing its elements in a roster we

enclose it elements withJ,p braces. If A is described by stating

its characteristics we must be certain that,the description allows

us to agtermine without ambiguity whether or not, an element belongs

to the set. "All the whole numbers I can write" does nOt suffice

to define a set unless it is known how much energy and tIme'IAhave,

hoW loig my writing equipment will hold out,,an8 in what order

0

31
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I propose to'write them down. "All the whole numbers greater than

3 and less than 4" does define a set, namely the null or empty set,

the set with no elements, symbolized by 0. _7--

Beginhing,algebra students bring with them a good deal of infor-

mation about two sets: the set A of numbers of arithmetic (the non -

negative real numbers) and the set P of points on a line. Each of

these has interesting subsets.

If every element of a set S belongs to

a set T, then S is a subset of T, and

we say that S is 'contained in'T, written

1

S C T.

Thus, the set -W of whole numbers (0,1,2,3,...) is a subset of the

set A'of the numbers of arithmetic: W C.-.-- A. It should be oted

that a set is always a subset of itself.

S is a proper subset of T if SC T, S /0 d S T .

Let us consider a line- d two distinct points 0 and U on the
- r-

line with U to the right of 0. Then take the distance between 0 and

U as a unit measure and mark all points on the line to the r ght,of

-U and unit distances from each other.
0

The set M of points so marked is a subset of the set P of all'points

on the line. An important fact in ,algebra is that there exists a

r lationship between the_set M of equistaced points, ax set W of

who e numbers. We say that there is a correspondence between

these two sets.

32
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Given two sets S and T, whenever there is a

well-defined rule which associates pairs of

elements, the first element of the pair from

S and the seCond.element from T, there is a

correspondence between S and T.

We can define, in fact, a correspondence between M and W which is

one -to -one; that is, to each-point of M we can associate exactly

one number of W, and to each number of W exactly one point of M.

Let us make the associatj.on as in the following figure:

0 U

1 2 3 4 5 6

Then we say that each marked point has a corresponding coordinate,

the whole number associated with the point.

Although it is convenient to speak of these points,4nd numbers

interchangeably, such as'"the point 2" when we mean "the point

whose coordinate is e,,it must be remembered that the'set M is not

equal to the Sit W. They are qUite different sets. But the fact

that their elements can be paired Off, one-to-one, enables us to

carry over to either set the properties of the other.

A correspondence between S and T is said to be
%

one-to-one-1f each element o S is associated
.

with'exac.tJ,y one element,of and each element

of,T, WIthexactly one elemeilp of S.

We.have avoided the necessity of listing a roster of the ele-

ments of W by writing

W =

r33 .

"N.



2.5

to indicate that each element has a successor and, heff6e, there is

4

no "last element" of W. Thi's is an example of an infinite set,

where we intuitively think of "infinity" in terms of "n9 end ".
,

But intuition is not to be trusted. It would bp better to

"scribe an infinite set in some manner which does not involve its

elusive "no end". This we shall do as follows. Note that there

a proper subset of W, the set E of all even whole'numbers

E (0,2;4,6,...),

which is in one-to-one correspondence with the set W. We indicate

the pairings of elements%of this one-to-one correspondence as

, follows

S.

E W

0 <--> 0

2 <-=--> 1

4 <--> 2

6 3

..This suggests a mor- satisfactol4y definition.

A set T is infinite if there is a proper

stbose S of T such that S and T. are in

one- o-one correspondence.

J

We define a set to be finite if it is not infinite; that is, a

34



A-

4

2.6

finite set cannot be put in one-to-one correspondence with a proper

subset of itself.

Now that we have established. that the set W.of whOle numbers is

infinite, we can show that the set of points M is infinite as a con-,

sequence of the one-to-one correspondence between leand M.

Some infinite sets have he property of being countable, that is,

of being in one-to-one correspondence with the set of counting num-

bers. Later we shall deal with infinite sets.whichare not count-

able, such as the set R of all real numbers.

Much of our attention in later chapters will be d.redted to the

fundamental one-to-one correspondence between the set of all the

points of a line and the set R of all real numbers. ThiS corres-1

pondence is at the heart of coordinate geometry -- the properties

of points on the line suggest,analogous properties of real numbers,

and vice versa.

7-f

In order to cash in entias intimate relation between sets of

points and sets of numbers we use special language and symbolism to

A AW
connect them. The number corresponding to a point:we have caAled

the coordinate of the point. The, set of po1nts corresponding to a

certain set of numbers we, call the graph of the set of numbers,

1 For example, lthe set of points indicated by heavy dots in the follow:.
I

ing figure

Y I .
is.the graph of the set (,2,3,5',6) . The graph of A, where

0 0
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th

A = set of all real numbers less than 5 and

.

eater than or equal tc 2/3

is indicated by aheavy line and solid dot in the fifpre below.

Exercises

1. Given the sets

, 3

0

B = set of all negative integers greater than 3.

C = set, of all whole numbers which are not multiples of 3.

D = set of all rational numbers between 1 and 2 written with

denominators between 1 and 4.

{o)

F = set of all rational numbers between,1 and 2 written with

numerators between 1 and 6.

G = set of all whole numbers which a e multiples of 3.

H = set of all numbers x such that x2 + x = x.

J = set of all numbers of the form 3x + 1 or 3x +, 2, where x is'

any whole number..

Decide which of these sets are equal; which are in one-to-one

, correspondence.

2. Which of the sets in problem 1 are proper subsets of the set W

of whole numbers? of the set G'ir problem 1?

3. There are vari us types of correspondences between sets other'

3 I

AW
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than oile#4-one. 7a many-to-one cormkpondence between S and T

associates each element of S with exaetly one element of-T7but

at'least one element of 1 with more than one element of S. A

many-to-many correspondence is defined accordingly. For each

of the follo'Wing pairs of sets a rule of correspondence is

,given; decide what type of correspondence it is.

(a) S = f (integers), 'T = I; 'to each x in S there corresponds-
-x ,in T.

(b) S = I, 111 = I; to each x in S'there corresponds x2 in T.

(c) S (real numbers), T to each x in S_there

corresponds y in T'such that x y = 7.

(d) S = R, T = R; to each .x-in S there corresponds y in T

such that x
2 = y

2
.

(e) \S I I, T = I; to each x in S there correspOns y in T

such that x
2

= y
3

.

(f) S T = (Sun., Mon., Tues., Sat.),

with, the correspondence given by tht calendar for July

of this year.

41-. Which of the fdllowing sets, are infinite?

(a) Set C of iWoblem 1.

(b) Set D.of Problem 1.

(c) Set of all positive rational numbe s written with

denominator 3.

(d) Set of call numbers of the form a NiF, where a is an

integer.

5. We may show that a set S is closed under a binary operation

as follows: Construct the set T of,all elements of the fOm

x*y, where- x and y- belong to S. If T is a subset of S,

then S i closed under *. (It is not necessary that T be

a prop r subset of S.) Decide whether ,the following sets, are

37
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Closed under the indic'ated operations:

(a) All whole numbers which are not

multiple6 of 3. ltiplication

(b) All whole numbers which are not

multiples of 4.
i

multiplication

(6) (0,,l) , multiplication

(4) (0,1) addition

(e) All positive ih gers, subtraction

(f) All positive rational numbers.: division

(g)- All positive intege s. half the sum.

(ii) All even integer half the product

(i) All squaneg -or integers. 'addition

(j) All rational numbers between 0 and 1. multiplication

With what matnematicallfacts do you associatetheanswers to

(a) and, (b)'?

A unary operation is performed on a single element. Decide

whether the sets are closed under the indicated unary

operations:

"(k) .All positive rational numbers.

(1) All integers.

(m) All even integers.

6. Draw the graphs of the sets:

(a) D of PrObIem 1.

(b) F'of Problem-1.

\l"!

fig

38

square root

sqlaaring
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2. Sentences. The properties of an abstract system could be

described and recorded in terms of English sentences. _But there is

much efficiency and avoidance of ambiguity to be, gained by ,abbrevi-

ating'English sentences. into mathematical sentences. Thus we

abbreViate the sentence

to

"Fibre plus three is nine."

4 5 + 3 ..9,

meaning., of course', that "5 + 3" and "9." are different symbols for

the same numb7. There is no ,doubt that we have written an English

sentence, but
/

,there may be some doubt about the corresponding math-
.

itatical.oentende. It_is a sentence, even though the statement it

makes is false. We shall be concerned with sentences pr statements

which we assume are either true or false, but not both, and have

meaning and content. Any statement to which this assumption does

not apply shall be excluded from our discussion. Tor,example,

"4 = a ti-langle," is without meaning and will not be considered as

a sentence. Also, " 3+ - ( ) = " Taies-no sense because it

does not c onform to accepted mathematical grammar. On the other

hand, "Every positive even integer is the sum of two primes," J1 a

sentence because even though no one knows whether it is true, we

are willing to accept it as either true or false. The assumptions
"

hat a sentence is either true or false, but'not both, are often

galled the laws of contradiction and the excluded middle of logic.

)1,

,Simple sentences concerning numbers may involve any of the verb

3D
{
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syMbollk (T, <, ;,1 A, 4, *, which have the usual meanings of

equality and Order and their negations. Compound sentences are

constructed from simple sentences by conjunction, disjunction,

or conditional.'

If; A, B are sentences, then the sentence

A and B con unction)

is true if both A and B are true; otherwise it

is false. The sentence

A or B (disjunction)'

is false if bpth A and,B are false; otherwise

it is' true.

For example,. the disjunction

5 < 6 or 5 =6 (abbi,eviated 5 < 6)

is true because.at least one of the sentences, namely. "5 < 6",

is true. But the conjunction
.

. 5 <- fr and 5, = 6
*

is false because at least one of the sentences, namely

,is false.

az If A, B are sentences, then thesentence

if A, then B (conditional),

is .false if A is true and B is false; otherwise,

it is true.

Aexample, the' conditional

if 2 + 3 . 5, then 3 + 4 . 6

H5 6H,

is false because the sentence A: 2 + 3 = 5 is true-.and the

sentence. B: 3 + 4,=.6 is false..'On the other hand, the el#**

p

4 0
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'if 2 + 3 = 4, .

is true because "2 A-. 3 = 4" . is false and "3 + 4 ='7" is true.

At this point it is instructive tolist the possibilities

which, according to the definition, yield a true conditional.

A B if A, then B

True True True/

Alse True

False False

True

True

The remaining possibility, namely A true and B false, is the only

one for which "if A, then B" is false.

At first thought this, definition of a conditional seems to

violate the,commOn meaning of "if'A, then B". Actually, this

definition is motivated by our desire to express any valid reason-

ineleading"from a sentence A to a sptence B. Certainly, if A is

true, then any reasoning pr.spess that is valid will lead us from

A to a true conchthipn B. This is the first possibility listed

in the above table. But we must also acknowledge that if we argue

from a false premise A and proceed by means of valid reasoning

to a conclusion B, then B may sometimes be true, sometimes false.
9$1,0

The emphasis- is on the validity of the reasoning. For example,

J,f we take as our premise A: 5 = 4, we may 'add 3 to both members
..- 46.

to obtaln B: 8 = 7, which is false; we may, instead, remark

that "5 = 4" and "4 = 5" yield B: 5 +4 = 4 +:,,,, which is
.

'12
true. In each case, the l'easoningwasibnce, it is

. .

4 1
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suggested that ,our definition of a true condition include the-

second and third possibilities in the table. Of, course, after

we agree on a definition, we must forget the motivation which

suggested it and accept the form of the conditional even when

there ins no apparent relation between the sentences A and B

in the sentence "if A, then.B".

We do not allow ,the fourth possibility to occur 'in a valid.

reasoning process. Thus we call the conditional false if a true

A leads to a false B. This can be summed up by saying thsit the

conditional "if A, then B" is true if A is false or B is true;

it is false if A is true and B is false.

We write the sentence

A, if and only if B (biconditional)

as an abbreviation for the conjunction

(if A, then B) and (if B, then A).

Thus, a biponditional is -true if both A and B are true or if

both A and Dare false.

!` The question arises: Is the following a sentence?

x + 3 = 5.

N.,The answer depends on the meaning of the symbol, x.

require 'Plat x be jsymbQl for a numbev without our stating

that numbtr_spesg-ieully, then "x + 3 = 5" is an open sentence
-

in the sense that the question of its truth is left open until

4140.-

we specify what number x is
47

The particular set of numbers

from which x is to be chosen is called the domain off' x.

42
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Here we have the first example of a variable; a more detailed

discussion will be given-in Chapter46.

'There is a close tie between open sentenc6s in one'variable,

sets of real numbers, and sets of points on the number line.

For example, if the domain df x is the set of all integers,

then the open sentence

x > 1 and x < 5

(which is usually abbreviated to "1 < x < 5") is true when

x is chosen as any element of the set

(1,2,3,4).

4nd this set has the graph

0 I 2 3 4 5 6

It is natural to call (1,2,3,4) the truth set of the sentence

and the graph'of this set the graph of the sentence.

The truth set of a_rntence in one variable

is the set of all numbers in the domain of the

variable, and only tho4se numbt3i's, which make

the sentence._true.

Thus an open sentence in one variable is a sorter which separates

the domain of the variable into two subsets, one the truth set of

the sentence, and the other the set of the remaining, numbers.
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Note the importance of specifying the domain .of the variable.

If for the sentence "x > 1 and : x < 5" the domain is, instead;

the,-set of all real numbers, then its graph is

0 I 2 3

It is instructive to compare the graphs of the three sentences
c"

> 1", "x < 5", "x > 1 and x < 5 ", where the domain of x

`is, say, the set of all positive real numbers.

x > 1 1-41
0 I 2 3 4 5 6

x < 5

x > 1 and x < 5

0 2 3' 4 5 6

3 4 5 6

We see that the graph of "x > 1 and x < 5" consists of all the
°

points which are in both the graph of ux > 1" and the graph of

< 5"

If S and T are sets, the set' of elements

each of whibh belongs to both S and T is

the, intersection of S and T.

Consider the sentences -"x < 1", "x > '5", "x < 1 or x > 5",

where the domain of x is the set of all real numbers.
c

,d1
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= x 1

x > 5

x < 1 or x > 5

thigf
2 3 4 5 6

(101.10.1 i
0 12 3

4

4 5 -6

The graph of "x < 1 or x > 6" contains all the pointa,,whiCh.

belong to either the graph of "x < 1" or to the graph 6f "x > 5".

The set of elements each of ilich belongs

to either S or T is the union of S end T.

As another example consider the open sentence

if y-< 3, ,then y > 5, y any integer.

The truth set of this open sentence must con in all the integer's

greater than 3jSince for these integers the sentence fly < 3" is

oftlse); it must also contain all the integexi greater than 5

(since for these integers the sentence "y > 5" is true). Hence,

the truth set is the set of all integers greater than 3.

CorpideP the open sentences

(1)

and

(2)

if r < 3, then 4 r any integer

if 3 = 5s then = 1, q any integer.

Since in sentence (1)\, B: 4 = 2 ,is false for all integers, the

conditional is.true o y for those integers for which A: r < 3

is false, i.e., for r > 4. In sentence (2), A: 3 = 5 is false

for all/,integers; hence, the conditional is true for all integers.
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A sentence'in two ordered variables has a truth set consisting

of a set of ordered pairs of numbers, the first number of each pair

corresponding to the first variable and the.second number to the

second variable, such that these pairs and only these pairs make
\

the sentence true. For example, if x (the first variable) and

y have as' domains the set of positive integers, then the sentence

V;
x +y= 5

has the truth set ((1,4), (2,3), (3,2), (4,1)).

The graph of a set of ordered of nuMbers is the set Of

points on a plane located with respect to two perpendicular number

lines as follows': If the number lines'-coincide at their 0 points,

the number pair (a,b) corresponds.to a point P whose projection

Oh the first line haS 'coordinate a and whose projection on the

, other line has coordinate b. For example, the graph of the

sentence r.

x < y: and y < 1,

where the domains of x and y are the set of'all real numbers,

is obtained 4s follows. The truth

set of "x < y" is the set of all t
4

ordered pairs of real numbers fv.

which the first number is less than

the second;: the truth set of "y,< 1"

is the s't of-arT opderad pairs for

which the ,second number is less than

1. In the adjacent figure the graphs

of the separate sentences are shown

with different Shadings, and the graph of the conjunction

"i < y and y < 1" is shown with double shading. (Of course,

y
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the shadings terminate at, the edges of the figure because of limit-

ations of space and not because the graphs terminate there.)

These, are the building blocks of algebra:

(1) Solving an equation in one variable is nothing more than

detbrmining the truth set of the open sentence. The solution*

depends on the set of numbers available for the domain of the
0'

variable -- for certain domains the solution may be the null zet,

whereas for other domains its truth set may be non-empty:

(2) Stating-a property of,an algebraic system is a, matter of

writing an open sentence which is true for every element of the

system. For example, the distributive property of the system

of real numbers can be stated as:..

,

For any real number, and any real number.

y and any real number zi5, the sentence

x(y + z), = xy,+ xz.

.Als true.

This we usually abbreviate"to:

For any real i, y, z, 40

x(y + z) = xy' + xz.

As another example, let,A be a variable whose doMain is the set of

411 sentences. Then the law of contradiction Of logic can be

stated as:

*We often say "solution" for "truth setu, particularly if the
sentence is ah eqUation.

4 7
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For every A, the sentence

A or not -A

is true.

And the law of the excluded middle is:

For every A, the sentence

'A and not-A

is false.

Here 'e use-the notation "not-A" to denote the negative or denial

of A, that is, the sentencelwhich is fals4...hen A is true, and
'

/

true when A is false.

Exercises

1. If T denotes "true" WhdV "false", fill in the follAing tables

with T or F, if possible, where A and B are sentences.

.(b)

A B A and B A or B not-A if A0then B not-A or B

T T

. . .
ft

T
°

T F A

.
.

F F

.

0
0

1

A B A and not-B if not-A, then B if 13, then A

T T
v. '''''

T F t . ,

F T . . ,
.

F F
.

0... .
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A B if A; then B A or B A and B to and. )not-A

F ':

T F*

.

T

F T
.

2. Let the_domain of t be the set)of positive integers. Then

find the truth set of each of the sentences:

(a) 8 + t < 12 or 5 + 1 / 6

(b) 8 + t < 12 or 5 + 1 = 6

(c) 8 + t < 12 and 5 + 1 / 6

(d) if 8 + t < 12, then 5 + 1 = 6

(e) if ,5 + 1 / 6, ,then 8 + t < 12

(0 if 8 + t < 12, then- 5 + l'/ 6

(g) t + 2 = 4 or t + 2 / 4

(h) t -1-;2 < 4 and t + 3 > 4

(i) (t + 2 < 4 or t + 2 < 5) and t + 2 > 3*

(J) t+ 2 < 4 or (t + 2< 5 and t+ 2 > '3)

3. Let the domain of t be the set of real numbers. Then draw

the graph of each sentence in Problem 2.

14. Find the truth set of,each of 'the following sentences, where

x is the first variable, for the indicated domai4 R of x

and y:

(a) x = y2, R = (1,2,3,...,36)

(b) x + 2 = y and x + y = 4, R =

(c) x + y,=. 5 or 2x + y = 6, R = (1,20,-4
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(d) x + y = 5 and 2x + y = 6, R = set of all real numbers.

(e) x < 3 and y > 1, R = (1,2,30,5)

(f) x + 2y > 0 and 2x + y < 0, R =set of all integers
.

between -4 and 4.

-5. ,Draw the graphs of the following sentences for the indicated

domain R of each of the variables: .(Consider x as the

first variable.)

R = set of all real numbers.

R = set real numbers.

(a) x + y = 3 and 2x + y = 5,

(b) x + y = 3 or - 2x y = 5,

< x + y < 4,(c) 1
- 2 2

(

R = Set of all real numbers.

d) x < 3 or 'y > 1, R = set of all real numbers.

(e) x > 2y,,, and x < 1, R = set of all real numbers.

(f) x '< y and x <.-y, R = set of all real numbers.

3. JLogic. In,,Chapter 3 we shall prove the following

property of real numbers:

For any real numbers' a and b, ab > 0 if and

only if ''(a > 0\ed b > 0) oi; (a < 0 and b < 0).,

How do we know this sentence is true for,any two.real numbers ra

and b? Is 'this a rule laid dowel' arbitralily b

Or did this property arisethrotigh experience -,with numbers by
t

4
trial, and error?

of

C?
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It happens that this property can be proved as a consequence

of other more fundamental properties; that is, it is a theorem.

But what about the other properties from which it is deduced?

.Are they also theorems? This line of 'questioning would eventually

lead us back to a certain basic set of properties of rearnumbers.

No property included in this bAsic set of properties could then

be deduced,from the other properties in this set. We are then

left with a set of properties that cannot be proved.

Even the words and symbols used 41 the above property give us

trouble. What does the symbol "<" mean? When we define its
4

meaning in terms of other words and sytbols, we will again be

squeezed back to a set of wogs and symbols no one of which Can be

q
defined in terms of the others (unless we are tempted to define

these basic words in terms

kind of definition which i mathematically taboo).

f t

words already defined -- a circular

Thus we must begin a study of any mathematical system with a

set of undefined words and symbols. Although no attempt is made to

define these words formally we always have in mind one or more rep--4*"

resentations of the words. In a Study of plane geometry, for

example, we begin with 'undefined words tuch as "point", "line",

"on", "equal", but we may visualize "point" as a spot of.ink on a

paper, "line" as a streak of ink, etc. In algebra we can bei'ln_with

the undefined words "number", "sum", "product", "equal", "less than",

51
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and symbols representing' these words. It.. is possible to think of

many kinds of "number," and sums and products of numbers as repre-

sentations or model's of these words, but any logical deduction from

these words must be independedt of the particular int6rpretations

that might be attached to'them.

It should be Understbod that the set of words left u efined

is somewhat arbitrary and is determihed partly by convenience

4or convention) and by the amount of rgOr Amanded. A small*

set of words may be possible, or even a different set. Then the

others are defined in terms of this,set.

Having decided upon a basic set of undefined words, we next

agree upon, certain properties that we shall assume these words obey.

These properties are stated in forms of open sentences, and they im-

poqe condition's upon the undefined words. That is, we do not

define the words but we assume-they satisfy certain conditions.

These assumptions we call axioms. They are not "self-evident" or

obvious.' They are properties.which are assumed to be true. The

axioms chosen are often suggested by our experience with the model

we had in mind for the undefined words. We must, however, regard

the axioms as- independent of any empirical considerations. In this

.1/ay we hope, by deduction, to.make discoveries withoutlexplicit

perience and then to use these new facts as a check on our experi-

.

5 2
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ence, and vice versa.

After we select a set of axioms, that is; a set of.properties

which we assume are obeyed by Tr set of undefined terms, we may

then prove theorems. These are sentences which can be proved true

k. =1

in accordance with the laws of logical deduction on the basis of the
`kg \ et
.

cocepted axioms. In this way we build a body of knokledge about a
0

\.'

mathematicgI system. In summary, first assume a set of axioms to

be true. Prove that t" the axioms are true, then certain theorems

are true. Then prove that if these theorems and the axioms are

true, then certain other 'theorems are true, etc. In the process,

from time to time wp define certain new words and symbols in terms
. r -

of the basic set of undefined words and symbols, and then other

words in erms Of these words, etc. At no point in the process may

we useany informatiori other than that obtained in a prior theorem,

a prior definition, or the.axioms.

Thus, all the procedures and rules Of algebra can be s as

theorems which can- be derived from a small set of axioms. We shall

list these axioms in Chapter 3.

A/
At this 'point an objection might be raised. Why can't we avoid

all this bother and simply take all the results in algebra as rules

without worrying which must be.-1;7;;ed'and which can be assumed? In

fact, why prove results that deem obvious anyway ?

There id-dapger inherent in accepting a list of-'rules without

proof.. How can a given rule-be tested with respect to its validity?
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We cannot check its truth'for every value of the variables in

general.

of rules,

with each

And if the rules are not,derived from some basic set
*

we will never have assurance that they are consistent

other. We say that two statements are inconsistent

if they, contradict each other, that is, if they lead to a statement

of the foxp1 "A and not-A". 'As noted earlier, such a statement is

false for every sentence A.
4

Nate that it is easy to see how to prove the inconsistency

of a bet of statements; the existence.of one counter-example, ..a>
, e

specific contradiction, is enough. But proving consistency is

another matter. Regardless of how hard one searches for counter-

examples, the mere fact that none has been Xpund apes not guarantee

consisterity, When the search is called off, the very next example
4w

might have yielded a counter-example. The only way to guarantee

consistency of a set of statements is to prove that they are logical

consequences of a set of consistent statements, namely, a set of

consistent axioms.it

Nove that we have discussed the need for proving the results

-Of algebra, the queati4 remains: What do we mean by a "proof"?

Too often a result is considered proVed if it is "believedor

if it is:"plausibae, or if it is known to be true in a few cases.
R

Having faith in a statement is not enough. In the latter category

Is the sq,,called "proof" by induction:** "It has been observed

*The problem of proving that a givefi set of axioms is consistent is
a fundamental and difficult job not to bp,tackled here. Indeed,
in some 'cases possibly it cannot tie pro*ed.,

**Not to be confused ith mathematical induction, which is a power-
ful and valid metho of proving special types of statements_.,
(See Section '4,1.)'
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that the result has held true in n trials in the past; hence,

it will continue to hold true in X11 cases."

We need not belabor the fact that this is not a proof. Of

course, by induction one may arrive at a conjecture'which can then

be proved by deductive methods. G. Polya has written a fascinating

set of books on this subject, Mathematics and Plausible Reasoning,

Princeton University Press, 1954, in which he investigates how One

discovers what statements are worth trying to prove and what

-suggests such statements in the first place.

In algebra, theorems are written as conditional compound
.

sentences of the form

if p,- then q,

where p land q are open sentences. !hus we mean by the proof of

a, theorem the process of showing that a conditional sentence is true

for all values of the,variables (let Us call such a conditional

true, for short). The sentence p is called the hypothesis; it

is known or assumed to be true. The sentence q is the conclusion;

it must be proved true. There-are several methods of proof--

available.

Direct proof. A basic rule of logic is the law of transitivity

of conditionals:

If the conditionals (if A, then B)

and (if B, then C) am true, then

the conditional (if A, then On

true.
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This law can be stated more compactly by writing the.true conditional

"if' A, then read "A implies Bit, as

(A true conditional is often called an implication.) Then the ls.w

becomes

(A and BC) (A :C),

and the transitivity.of the implications is more apparent.

A direct proof of theAheorem "p=== q" is usually effected

by collecting known axioms and theorems in the following format:

.pr, r .5, s' t, ... <,- u q.
.

1

"."-\\ r,

Then, by transitivity, p ==-4.T.
1,

i

For example, awsider the theorem:

If a = b, then'' a - b =,0.

Here we must prove q", where p is the sentence b"
7

and q is the sentence "a - b = 0". Let us assume it has been

established'previou'sly that

a = b a + (-b)-= b +-(-b)

and

a + (-b) = b + ()b) a - b 0.

Then, by transitivity,

_
> a =.b - b.= O.

.0/

A..
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In passing, we should note the many forms in which the

implication is written in mathematics, all of which are equivalent:

(Two open sentences are equivalent if their truth sets are equal.)

,(if p, then ' q) is true

p q

q, if p

p; only if q

q is a necessary condition for p

p is a sufficient condition for q

if not q, then not ,p.

Thq last of theseis called tba.;cOntrapositive of th%implicaAion. , .
'

my'

It std, es that if q is false,' then p must also,be false.
y

100
ir

.

4

. As mentioned before, the sentence np,..if and,oy7 if- e

is really a statement of the conjunCti:on of two conditi onals:

(if. p, then q) and (if- q, their p).

Thus to piove a theorem of the form "1), if and only if qn, we 1

must really prove two teorems:

p q and q P.

Indlrct proof. 'This method often called "proof by''

contradiction". By a.contradiction we ,mean a Sentence of the

form "A, sand ,not A ". We assumed earlier jthe law o f contra-
,

diction) that 'such 3 sentence is,plways, false.

. 4,
- .

.

.

t, .C.
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For example, let us prove the theork:

If a is an integer and a
2

i 'visible by

2,1( then a is divisible by 2. -,

The hypothesis. is: a
2

= 2c, for some integer; c. Let-Us

acid to this hypothesis the denial of the conclusion:i a = 2d .4 1,

for some integer d. Now our new hypothesis is: I

a
2 = 2c' and a = 2d + 1, for some integers c, and d.

,,

By sqpiring both members we have

a = 2d + 1 a2 = 4d2 + 1 = 2(2d2 + 2d) + 1.

2c and a = 2d +1 ===4>a2 = 2c and ,a2 = 2(2d2 + 2d) + 1.

-The latter sentence is a contradiction because a
2 cannot be twice

an integer and at the same time one more than twice an integer.

Hence, the assumption that a Is not divisible by 2 '1ed to a

contradiction; therefore, a is divisible by 2. Here we took

as part of our hypothesis the assumption that - then conclusion q

is false. From this hypothesis/we derived a se tence of the form

"A and not-A", that is, "A is true and A s False" andole

thus proved that our assumption about the conclusiOn was invalid;,

hence, q is true.

4

O
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The method of indirect proof consists of

proving "Ok==-0 q" by, proving that "p

and not q" implies a,loontractiction;

. that is,

(p and not q) r,

where r is a contradidtion.

There is no.senerallrule which tells us how to arrive at a
4

contradiction. This comes only with experience. Nevertheless,

the indirect method often provides'an attack on an ,"obvious"

theorem which eludes the-direct method. This is particularly

true when the theorem is a statement about all the elements of a

set; then an indirect proof deals with some elements not in the
-

set.

Since the statement "not-q not-p" is equivalent to

H
p ..= q", another indirect method of proof consists of proving

the contrapoSitive the theorem. In the preceding example,

another Indirect proof would be obtained by proving the contra -\
p "Ifnamely, If the integer a is not divisible by 2,

then aq is riot divislble by 2." .

, r

'The question pertinent to this stddy is: How. much of algebra'The
In

' "..".."...... \' ., ' Y 0 ..r

should be proved in a first course? A considered opihion is that
,o.

the student shouldbe asked to prove'very few theorems, but.that

h (shOuld be exposed to enough proofs in various degrees of

.

.....'

it
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1

completeness to show him methods and necessity of proof and the

jOys,of devising and understanding theorems. The student should

become convinced that it is. desirable and necessary for the results

he is using to be proved rather than accepted as rules, even though

he is not mature enough to carry out such a program in detail.

f He should be, made to realize that one could prove the various

prOperties/- as consequences of basic properties.. He, must always

be told the truth about a result -- that it can be proved and is

being accepted temporarily without proof. Occasionally, the

outlines of proofs can be carr out until he eventually acquires

a feeling for the meaning of prOof. By the end of the course the

more able students should be ready for a discussion of,the
4
axiomatic basis of algebra. But it is not recommended that such,.

a course be started from a formal list of axioms:

1

4

On the.otlier hand, the teacher' should have a clear idea from

the very beginning of precisely what Asumptions underlie the

algebra that is being taught. Although it is a long, exacting

task to develop' all the results of algebra from the axioms, he

should be familiar enough with this development to understand its

framework and its meth?dology. .Portions of Chapters 3, k and 5

will be devoted to this,development.

e
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ExetaseC

1. Two compound open sentences are equivalent if their truth sets

are equal, provided their variables have the same domain.

Equivalence can sometimes be shown by means of
ktruth tables.

For example, cQnsider the open sentences "if A, then BH

and Pif not-B, then not-A" (called contrapositives), where

A and B are open sentences. For any common value of the

variables there are certain possible cases of A, B true or

false; for. each eau we determine the truth of the compound

".SentemOr as follows:

A B if A, then B not-B not-A if not-B, then not-A

T .T T F F T

F T
1/°'

T F T "I'

T' F F T F F.

F F T T T 'T'

Since the truth tables for the two compound opep sentences

are the same in every case, we have shown that the

are equivalent: In symbolic fora;

By means

A

(54(ruth taiplu decide

of open sentences are equivalent.

>not -A.

sentences

4

which of the following pairs

(a) if A, then B; not -A` or B,

(b) A or not-B; not -A and B

I

61
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(`e) if A, then ; if B, en A (These sentences a

converses.)

,(d) if A, then B; if not-A, then not-B (These yen ences
4

are inverses.)

(e) not-(A and B); not-A or not-B

not-(A or B); not-A and not-B

(g) not-(if A, then B); if A, then not-B

(h) ,not-(if A, then B); A and not-B

2. Write in symbolic form the facts about certain pairs of

equivalent' sentences learned in Problem 1. In particular,
.

. _ I,.
Illat is the

,

negative of a conjunction, of a disjunction, of
. i

a conditional? Use these results, to write the contrapositive,

of

(a) if (A or B), then C

(b) 'if A, then (B and C)

(c) if (if A, then B), then '(C or D)

(d) if (A or not -B), then not-(C or D)

3. Find Counter-examples to disprove the statements:

(a) If x
-

is a real-number; thenl,;+ 1 X + 1.

(b) If x is a real number, then 3x
2
+ 4 2x + 5x2 .

(c) n is a'positiveinteger, then n
2

- n + 41 is

a prime.

62
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(d) If x is a real number, then N/342"=. x.

x
x =

- x
2

(e) if x Is a real number, then = + 1.

(f)' If' x is a real number, then a = 1.
x

(g) If x and y are nOn-negative real numbers, then

x,+ y > 2 ,i57.

4. Decide which type of proof is best suited(for each of the

following theorems., "Then prove the theorems.

(a) If the integer a divisible by 2, then a
2

is

divisible by 2.'

(b) Ifr_a is an integer and a3 is divisible by 2, then
,

a is divisible by 2.

(c) If b is a prime and b is greater than 2, then b

is nOt divisible by 2.

O

al' V.
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SORUCTUREbF THE REAL NUMBER SYSTEM

1. Axioms for an Ordered Field. Much of elementary algebra is

concerned with the system of real numbers. How does the mathema-

tician study a specific model such as the set of real.numbers? He

forms an abstract sySem of undefined terms and oPerations and

assumes that this abstract system obeys the properties that the

model is known to possess. Then he studies the abstract system,

forgetting that it has any connection with the faMiliar model.

this pay he may discover structural properties that he did not

notice in the model.

We shall form an abstract systemc called a'comblete ordered

field. Its elemen&and operations will be left undefined and its

axioms are suggested by our knowledge of real numbeis. For conVen_

,
ience, let us,011 the undefined elements "numbers" ,rememering

that this is merely a name.

Qur abstract system then Consits of't set of 'undefined
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4

-elements symbolized by a, b, c, 0, 1, ..., with WO

undefined binary operations, (called addition and multi lication,

symbolized by + and ). In all our work the sym ol "=" is

an abbreviation for "is" and is used to assert the/ act that two

particular symbols represent the same' element of a aet.
/ /

The basic properties, axioms,which'we sha 1/ assume for the

system (5.1% +, ) are listed in three groups., The first c9nsists

of the field axioms; ,any system with two ope tions which satisfies

these axioms is called a field. Then we sh 11 list the order

axi oms,- twhich endow' the elements of 7' "th relative size.

Fina ly, the completeness axiom will guarantee that there are

enou elements in the system so_tha/it will have all the

proper ies of the real number model. The latter axiom and its

implic'a ions will be dealt with in Chapter 5.

2. Field Axioms. Let

a and in7, there i

element 1) in,7° such

Fl For any d b in r,

.a + = b +a and ab = b.a.

assume that for any elements

unique element 'a + b and a unique

hat the following ar\true:

F2. or any , b and c in'5',

(a + )+ c = a + (b + c) and (ab)c = a(bc):

F3 Fr y .c

(b + c) = (b) + (ac).
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between the operations; multiplication is distributive through

addit)on. Let it be.agreed that multiplication is performed before

addition, except where indicated otherwise; then we may write the

distributive property as

a(b = ab.7 ac.

Each of the operations is assumed to have an identity (or

rlltral) element. In F4 the symbol' "0 ", zero, is used as the

identity for addition; in F5 the symbol "1", one, is taken as

the identity for multiplication. Note the important assumption.

in F5 that 0 / 1; this "obvi fact does not follow from the

other axioms and must be as ed.

Finally, we assume' T at each a in7P has an inverse under

0

addition, -a, and that each non-zero b in has an inverse

1
under multiplication, E. -a is read "the opposite of a".

We call tt the "reciprocal of b ".

Before we begin to deduCe new properties of the operations

froM the field axioms, let us make some remarks about the equality

relation. Since the statement "a = b" means that a and b, are

symbols for the same element, then it folrows immediately that if

.L. a., b, c, d are any elements of some set,. then-

a = a

E2' If a = b, then b = a.

If a = b and b'= c; then_ a = c.

E4 If a = b and c ='"d, then a + t = b + d.

E5 4 If a = b and c = d, then ac = bd.

e

67
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F5

a

4
3.3

N , i

There Is an elemeit in ,denoted by "0", such that

a+0=0+a= a jo 1

.for every a in 7 .

There is an elemerit in , denoted by "1", different

from 0, that

a1 = 1a =-a.

for every a in Y°.

F6 For each a Inc?' there is an element in Y denoted by ;,

-a1,1 such that

a + (-a) = (-a) + a = 0.

F7 For each a in7 except 0, there.is an element in

0

0 if ,1

i-c.77 denoted by such that

0 .

1ag = = 1.

We note certain familiar properties among the' field axioms.

First, ?° is closed under "+" (addition) and under !111

(multiplication) because we assume for any pair a,b inS7- that

there is ,a unique sum a + b. and a unique product a..b,,An

)04*. (We_ahall_omit the whenever no coniusiOn is, ,caused and

write "ab".)

In 'Fl we assume that both binary operations are commutative,

and in F2 that both are associative,_ Up to this point the two

operations have symmetrical properties; in'fact, they could be

interchahOd without any effect. But in F3 we assume a connection

0

4

O

0 0,

6
00

a

o

O
0
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3.5

These'five statements srmmarize the various consequences of

having different symbols available to represent a single element of

a set. For example, if A. and b represent the same element, and

b and c represent the same element, then, because b can repre-

sent only one element, these are the same.

wk

is called the transitive property of equality. the same way, E4

and E5 state t1``+ immediate facts that the sum and product of two

fact, stated in E3,

elements, being unique, cannot be changed by representing them with

different symbols. The point to be emphasized is that a given

syntool in a given discussion will stand for one.and.only one element

-

and when various symbols represent the Same element any one of these

symbols-may be substituted for any other without altering the truth -,

of a sentence.

Some writers would prefer to leave the symbol 11=4 undefined, and

impose the conditions El to, E5 as axioms of equality. The same end

result 4 achieVed, although this approach is.concerned with lan-
..

guage rather than mathematics.

The familiar manipulations of algebra are now consequences of

Fl L) F7. We shall consider 9 few such conseWences (theorems). '''''''

0-

,'-- t--.
e,,,, N

Some'will be proved and.others, marked with *, will be left ea ex-
,k. .

.

ercises for the readev As an example of the style *of proof to be

1/

0 ,
u

used, we prove the theorem: If a, b, and c are any elements of

.1P4', then o

(a + b) + c = b + 4(c -it a).

68,
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Proof: We want to show that the number obtained as the sum of

(a + b) 'and- c the same number as obtained as the sum of b

and (c + a). We know that

b) C = C + (a + b),

by applying FY to (a + b) and c, since (a + b) is in p'" ;

also

by F2. Hence,

c + (a 42 b)= (c + a) +..b,

(a + b) +c = (c + a) + b,

by the transitive property of equality, E3. Also

(c + a)\-1- b = h + (c + a),

by applying Fl io (c + a) and b; hence,

(a + b) +c = b + (c + a),

by E3. This is the desired result.

In subsequent proofs we shall abbreviate the work as in the

following:

(a + b,) +-c = c + (a + b), Fl
,

. 4

'
= (c + ,a)-1- b, , F2

= b,+.(c + a), Fl

where closure under addition and the transitivity of equality are
-__),

used withdut mention. `°
.

Theorem 3.1 If a -and, b are any elements

a + b = 0, then b =
ct.

69
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'Proof: By hypotheks, a + b = 0.

Then

and

and

and

1

WI/

(-a) + (a + b) = (-a) + ox Eit

+ a) + b

0 + b = -a,

b = -a,

F6

Note. that F6 Assumes the existence of an additive inverse.

(-a) of a. Then Theorem 3.1 shows that there is only one additive

inverse of a. This proof that the additive inverse is unique is

the first one presented to Students in SMSG-F.

/
Theorem 3.2 (Cancellation property. -for addition.), 4

If d a, b, and c are any elements in
%NW

such tha

a + b = a + c, then b = c.

Proof: We know that -a = -a and a + p = a + c, by

hypothesis. Then

+ (a + b) (-a) + (a + c),

[(7.a.) + a]' + b = [(-a) + a] + c, F2.

Then

0 + b = 0 + c,

b = c:

401.

70
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3.8 A

L.-A

Theorem 3.3 -For any _a thy- ,

a =

Proof: + a = O.,

"nee, 4
a = -(-a), , irk TheOrem 3.1.

Theorem

Proof:

(a + b) + [( -a) +

Hence,

For any

(-a)

a and 1!) in ,

+ ( -b) = -(a + b).

((a + b) + f-a)) + (-b)

= ((-a)+ (a + b)] +'(-b) ,

F2

Fl

= [(( -a) + a) + b) + (-b) , F2

(0 + b)+ (-b) , F6

=-b + (-b) , F4

, F6.

+ ( -b) -(a + b) , Theorem

tTheorem 3.5 The equation a+x=bhsthe unique s'oluti

is one 'and on one

namely,

(-a), + b,;,' that is, there

number x such that a +

x = (-a) + b.

Proof: First, we .verify that if x = -a) + b, then

a + that,is, we verif that (-a) + b is a,

J solution. If x = (-a) +,b, then

a + x.. a + ((-a) + bj ,

= [a + (-a)) + b ,

= b
0"

7:1

E4

F2

F6

F4:
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I

Next, we show that this solution is unique. Suppose thel;e are two

solutions and xi,. .Then

a+ x= b and ,a + xl =

a + x 4 a + x, ,

= ,

and E3

Theorem 3.2.

Thus, there is only one solution

In these Proofs we see the interesting and powerful way in

"which we use the uniqueness of the additive inverse-.

Each of the Theorems 3.1 to 3.5,involves only the operation of

addition. Corresponding theorems involving multiplication are

-.. proved by the simple device of replacing + by ., 0 by 1, -a by .1'.

Notia the parallel among the following: (a and b any elements inc7-)

Theorem 3.1

a + b = 0 ==4,b = (-a)

. I

Theorem 3.2
#

a + b = a + c b = c

Theorem 3.3

a = -(-a

Theorem 3.1'

ab = 1 = 1
a

*Theorem 3.2,

ab = ac and a 0, b ='c

*Theorem. 3.3'

Theorem 3;4 *Theorem

(-a) + (-b) =-(a + b).

7.2

a _
1

a

(a) (b)
71-1,

44
et.
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Theorem 3.5 *Theorem 3.5'

a + x = b has the unique ax = b, a 0, has the unique

solution (-a) + b. 'solution (1)b.
a

We shall give the prOof of Theorem 3.1' and leave the rest.for

the reader. If

On the left,

On the right,

ab = 1, then a 0 (why?) and

(1)(ab) (1)!1
a a

(!)(ab)= (!-a)(b)

b
4tyf-,to

(1)' 42
a

E5.

F2

F5.

F5.

1 E3Hence, b
a

Theorem 3.6 For any a inY

aO = 0a = 0.

Proof : at =a and 1 + 0 = 1 ,

a(1 + 0) = a1 E5

Also

Then

Also

s

a

= a + 0 ,

F5

F4

a(1 + 0) = a1 + a0 ; F3

= a + a0

a + aO = a + 0,

40 = 0 ,

0.a = 0 ,

73

F5.

E3

Theorem 3.1.

Fl.
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. The reader should not be misled by the apparent duality of the

operations and identities which occurs in the two sets of Theorems

'3Xt! 3.5 and 3.1' to 3.5'. This duality is nbt a universal

property of the elements of a field, as can be seen by forming a
,

.4

statement corresponding to Theorem 3.6, namely, a + -1 = 1, which
.

is certainly .riot true for some element& in,r .

*Theorem :3.7 For any a, b and c

(a + b)c = ac + bc.

Theorem 3.8 For any a and b, in 5,

Proof:

Hence,

(-a)(b) = ,(ab).

ab + (-a)(b) [a + (-a)]b, Theorem .3.7

= 0.b, F6

0, '. Theorem 3'.6.

(-a)(b) = -(ab), Theorem 3.1.

*Theorem 3.9 For any a and b in 5,

(-a) (-b) = ab.
kyr,

*Theorem 3.10 For any a in7, (-1)a. = -a.

iieW operations on elements of a field are now defined in terms

of addition and.multiplication.

* .. For, any,.. a and b. in
.

(1) the number a b, called "the

result of subtracting b frofri a"

or "the difference of a and b"

defined as
O

a - b'= a + (-b);

74
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(2) the number b, b / 0, called

"the result of dividing a by b"

or "the quotientof a and b",

is defined as

a

§ = a 4) .

The difference a - b is unique because it is defined as the sum

of a and (-b), which is unique. The quotient g., b / 0, is

1
unique because it is the product of a land B., which is also'

unique.

4 Here we can quickly clear up the question of division by; O.

By Theorem 3.5' the equation ax = b haS the unique solution:

(a)b, which by definition is ]k. Novi let b = 1 and. a =`0

1
so that /-83-. = ;.. zyAssume that is the'solution of Ox = 1. But

0
by Theorem 3.6, Ox = 0 for every x in,2°. -Hence, the equation

1
Ox = 1 has no solution. Thus, r is not a symbol for,any element

b

t
Lay', ad rd similar argument shows that is not uniquely

.

defined for y b ,in'. In other words, we have shown that

'0 has no reciprocal in 7". In our Sullgequent development we

.., a
shall always assume that for an element, of the form p b,/ Q. '

.,

Among the many theorems that can be proved, we choose as ,

,_

examples the following:

*Theor4m 3.11

+ a = b

75

*Theorem 3.11'

(--a )a = b

fan



*Theorem 3.12

3.13

*Theorem 3.12'

a - (b + c) (a - b) c a
= (1)(1

I

)
bc (b )(c)

Theorem 3.113 a(b - c) = ab - ac

Proof: 'Since a = a and b - c b + (-c),
P

a(b c) = a [b -+ ( -c)] ,

ab + a(-c) ,

6> A = ab + [-(ac)) ",

AI = ab - ac.

E5

F3

Theorem- 3.8

*Theorein 3.14 If ab = 0, then a = 0 or b = 0. (DO not con-

fuse with the converse, 'If a = 0 or b = 0, then ab = 0," which

is a restatement of Theorem 3.6.)

*ThedIkem 3.15

a - b c.- d

and o y if

#.
a +,d b + c.

*Td!orem 3.16

(a-15)+(C"-d) . (a+c)-(b+d)

*Theorem 3.15'

2 = if and only if
b d

ad . bc.

*Theorem 3.16'

()()
b d bd

Theor
ab a

cb c

Proof:
114ab)c = a(bo) , . I F2

r
(,bc)a , Fl

(cb)a , Fl.

is.

7



Sirice

0?

Theorem 3.18

3.14

(ab)c = (cb)a,

ab a
cb c

a c hd, + be

b
+

d bd

Proof:

a
= 2"1 and

c be ,
b bd d bd

*Theorem 3,.19 a
b

d

a c
+

ad be
7:1 bd bd

Theorem 3.15'.

IP

Theorem 3.17, Fl..

E4

. = ad (bd.) +.bc( bcil) , Definition

=:(4pd +.bei'(
bd.' )

, Theorem 3.7

-
ad + be ,

Definition.
bd

ad
be

Exercises

If a, b, c, d are ing° , ainve the statements of Problems

1 to 7.

1. (-b) = a

2. (it)(ab ) = a

3. (-1) + t(a + 1.) = ab

-4

4. If a = b, then -a = -b.

. -0 = 0

. If, a = b and c =`d, then a - c = b d.

77
/



S.15 .

7. a - (-b) = a + b:

8. Solve the %equation: x 4- a = b c for x; a, b, c, x in,7%

9: Solve the equation:
x

+
1

= 0 1 for x .

10. Is the binary operation of subtraction commutative?
]

Assoclative? If not, give counter-examples.

11. A-field° is an abstract system with two binary operations which

satisfies the field axioms Fl to F7. Verify that a commutative

group uprder addition whose non-zero elements form a commutative

group/under multiplication such that multiplication is dis-

tr utive through addition, is a field.

12. r-- nsider the,set of integers (0,1;2,3,4) obtained as

;)

/
remainders after dividing any integers by 5. Define the sum

./

a + b and the product ab of two elements of this set as

the remainders after dividing the usual sum and product by 5.

Thus, 3 + 4 = 2, 1.4 = 1, etc. Decide whet

and these two operat

soset

ield. If*so, what is the

additive.inverse of 3? The multiplicative inverse of 3?

13. Same as Problem 12, except divide by 6.

14: Verify that the set (E,O) and the operations + and x as

defined in Problem 1 on page 1.15 forms a field.'

15. Prove that in a field the identities for addition and

multiplication are unique. -

16. P ove that 0 is the only element in y° with the property

t at 0 = -0.

78
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3.16

17._ Consider the.system (s,10 , 0), where S is the set of

all elements '(a,b), a and b integ'ers, and

((a,b) Q (c,d) = (a + c, b + d)

(a,b) (c,d) = (ac,bd)

(a,b) = (c,d)* a =c and b = d,

Show that (0,0) ane °(1,1) are identities for ED and 0,

respectively. Is/ (5, (:),0 ). a field?

3. Order Axioms, A second, additional, set of axioms will

be assumed for the elements of 7'. These will impose4on the

elements of 7 an order. A field which satisfies the following

axioms will be called an ordered field.

In 'addition to the relation of equality, we introduce a new,

relation enoted by the symbol "<". The statement "a < b" is

read a is less than b".- We assume now 'that the system

+ , r
), in addition to being a field, has an order.

relation He rand satishes the

Order axioms

01 If a and b are any elements in c°, then one and only one

of the following is true:

lo,

a = b, a < b, b < a.

79
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02 If a, tb,

3.17

c are any elements'..in."° such that a < b and

tb < c, then a < c."

03 If a, b, c are any elements in such that a < b, then
4

a 4.0 < b c.

'04 If a, b, c are any eleats in P. such that a < b,' and

then

ac < bc..

As a matter of notation we agree that Ha < b" and, "b > a"

are the same statement, where the latter is read "b is greater

than a", thus the order axioms may be rephrased in terms of

the relation ">". We also recall that

a < b means a < b or a b

and

a 4: b me-ans a is not less than b.

In the light of 01-,

a 4: b means a b or a > b

and

a il. means a > b.

. ,

We say that H a is positive" when a > 0 and "a is negative"

when a < O. I.-
,../

A

80
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Note that the truth of "a"< b is not 'altered by using.

different symbols to represent a and b. This fact Can be

stated formally as

E6 If a = c, b = d

Some consequences

following theorem.:

and a < b, then c < d.

°Cate,

of the order axioms are stated in the

Theorem 3.20 For any a and b

< b if and only if 0 < b - a.

Proof of a<b0<b- a:

a <JCT.

a + + (-a), 03

0 < b a,' Definition, F6.

Hypothesis

Proof of
V
a < b 0 < b - a:

^,4

0 < b - a, Hypothesis

0 + a < (b - a a, 06

0 + a < b

a <

81

a],

V

Definition', F2
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*Corollaries to Theorem 3.20

J

.(1) a > b bif and.oniY if a - > 0.
0

'

,

(2) b < 0 il-and only if -b > 0.

(3) b > 0 if and only if -b <

O9

C.

O

By means of 01 we can sort all veal numbers into three dis-
A

7

joint subsets:

1) The set P of all positiye real numbers.

2) (0)

3) The set N of all negative real numbers

Hence given any elellient inc!', it belongs to one and only one
V

of they sets P, (0), N..;

,,;/ virtue of 02 to 04 we are assured that if a and b dii4e 0

-;Y t
,..- both positive, then sb are a + b and ab. If one is positive and

,. , .

4.,0,.. pother is negative, then their product is negative. If both a
kic!c- ,

.. . ..

.,
,

,, ',(and' b are negative, then a + b is negative and ab is positive.

Stated formally, we. have
.... .

.4;- Theorem 3.21 If a > 0 and b > 0, then

.,,.

*
,

a +,b > 0 and ab > 0.

Proof:
a >,0 and b = b Hypothesis;

a + b > 0 + b, 03

a + b > b ,

b > 0 , Hypothesis

a + b > 0 , 02.'

.40e
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Also, if a y*0 and b > 02. then

ab > ;,

.4b > 0 2

01

Theorem 3.6.

*Theorem 3.22 If a > 0 and -b < 0, then ab < 0.---

*Theorem 3.23 If a < 0 and b ,< 0, then

a,+ b < 0 and .ab> 0.

Theorem 3.24 If a + c < b + c, then a < b.

Proof: a + c <b + c Hypothesis

0 < (b+c) - '(a+c), Theorem 3.20

(b+c) (a+c) = b - a , (why ?)

< b *- a , E6

a < b Theorem 3.20.
4

Vote that Theorem 3.24 is the converse of 03.

*Theorem 3.25; If ac < be and c > 0, then a < b.`

Notethe relation between Theorem 31.25 and 04,

*Theorem 3.26 For c < 0,.

a < b if and only if ac >

*Theorem 3.27 If a 0, then a`2 > 0.

1

It was assumed in F5 that 1 0. Now we :can upeT4eore*3.27

prove

Theorem 3.28 1.> 0

Proof:

1 # 0

>0

1. > 0

F5

45**
Theorem 3.27

E6.
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Theorem 3.29

ab > 0.4==>(a > 0 and 1,6 0) or (a < 0 and b < 5)

Proof of . ab 'j 0, by hypothesis. If either a or b is

.zero, then ab = 0, which is contrary to hypothesis. Hence, neither

./1/
a nor b is zero. .If either' a or b is positive, say b > 0,

then if a< 0, ab < 0, contrary to hypothesis. Hence, if either a

or. b is positive, the other is also positive:- Finally, ifeither

a, or b is negative, ,say b < Q, then if a > 0, ab < 0, contrary

to hypothesis., Thus, if either a or b is negative, the other

is also negative.

Proof of .
This follow immediately from Theorems 3:21 and

3.23. .

* Theorem 3.30

ab < 041.--=>(a > 0 and b/400) or (a < 0 and b > 0)

*Theorem 3.31 .46

a- > 0 ab 5 0

The order axioms and.the consequent theorems form a basis.for

the solutionsiea inequalities. We shall -illustrate with several

/
amples.

Example 1. Find the truth set of
°

t 4 < 5x .+ 3, *x in 1

We} know that .

a < b*=> a + c <,b + c

by 03 and Theorem 3.24. 'Hence

2x + 4 < 5X + 3 4==:. 3x < ,-1
1

O

. O
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7

0
0

0



.4
'

3.22

,by adding -.5x - 4 to b th.sides of the inequality. This means that

4.< 5x + 3" and ".:.3x < -1" have the saw truth set. We aldo,

know from Theorem 3.26 that for c < 0,

a < b 4.1> ac 5 bc.

Then 6;a , ..0 .

,-3x < -1 -. x > :-.J-
.

. by multiplyppg by (-i). By /transitivity of ineqValities, 02, the
.

, ... .

.

A 3, / , -. 1'
'#

sentences "2x + 4 5x
o
+ 3/' and "x > 1" have exactly:the same truth.

3

, set. Obvioudly, the solution is .the set of alix in. such

Otat 4 > 1.
, 3

Example 2. Solve (x - 3)(2 3x), > 0, x in3 .

By Theorem 3.29,

Low(x-3)(2-3x) > 0.='.(x-3 ) 0 and 2=3x > 0)or (x-a <0 and 2-3x < 0)

> 3 and x < 2/3) or (x 3 and x > 2/4).

The'set of el ments in. hat are, both greater than .3 and less

than 2/3 is the null set. Hence, the desired truth set is the
.

, i.
set of all x in such that

A

x'< 3,and x > g/3,

t at is, such that

11

. :

Example 3. Solve

r

2/3 < x < 3.

X 1
< 0 , x in1.X

By Theorems 3.30 an 3.31,

t
4r

\'
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+ 1- < 0 <==>(x+ 1> 0 and 1- x <0) or (x+ 1 <0 and 1- x> 0)
' 1 - x

.4=41(x > -1 and x> 1) or (x < -1 ,and x < 1)

4===.(x > 1) or (x < -1)

Hence, the solution 4s the set of all real nUllabere lees than
1

or greater than 1.

,.40.- , # .

t

By heorem 3.27 we know that a
2
.> 0 for every a in p- . t......,

Let-AST
,

41

O

denote the non-negative element whose square is a
2

by

the numerals

VC7 = lat.

The symbol ..N/V is read "the principal (non-negative) square root

of a2,e. and lal is read "the absolute value of a". Si.ncte

Ian> 0 for,severy a in7, we may wr4.te

a > 0 ja.1 = a, a < O. =faf = -a.

Remark: .Two common errors occur frequently on papers of

algebra students:

(1) N/7 = x, (2) Nil = +.2

The first statement is true only when x > 0. If x = -2,-
0

for example, then the statement would read -.5.17= -2; but
. .

VT is by definition a non-negativenumb,er, The student

may then argue that .147 is either 2 or -2, as in the
.

. 1. second statement. The explana4i9n is that every numeral
i _-

represents exactly one number, and weldefine ',./IT to meaj 2.

,.

4
Then the student may reply that the square of ther 2 or

-2 is We agree, and we designate the non,nregative square

root with the symbol -.TIT° and the negative square root by

86
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Example 4.' Solve Ix - 21 < 1, x ink' 4

Hy-definition, x,- 2 > 0 ===> Ix - 21 = x - 2,

x - 2 < b = lx - 21 = -(x - 2).

Hence, "Ix - 21. < 1" 3.4 equivalent to

x 2 <1 and -(x - 2) < 1,

,that 4v; to

X < 3 and x > written 1. < x < 3.

On the number line, Ix - 2) represents the distance between the

points x and 2. If this distance' is to be less than 1, then

I

x must b point between, 1 and 3.

hlx-2

1

1 x 2

Exercises

1. Use 04 and the definition of ">" to verify the statement:

If 'a > b and 0 < c, then ac > bc.

2. Prove that if ,a < b < a, then a = b. i

3. Prove*: a < b if. and only if thege is a positive number. c

such that c = b./ This property clew y relates

to the operation-or addition.

4. Prove: For .a > 0 and-. b > 0,

b2a
2

> ID if and oily if; a1> b

(Hint:, a2 -11)2 ;,1= (a- b)(S + b) .)t

D 4 Prove: If. a.< b, then a < 241

2

.16, Prove,: If . a / 2b, , then b2

Prove: If. a > 0, then
1

> O.
a

11<11
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8. Solve the. inequalities:

(a) 2x - 4 < 4x - 7

(b) 5x > -3x + 8

(x

(c) 3

(d) (3 - x)(2x - < 0

(e)
3' + x

+- 1 >

(f)
x - 1

3-1 < <

(g) x(x + 2)(2 - x) > 0

9. Find the truth sets of the following sentences, where the

'domain of x iscpP.

(a) 'lx - 21 + 1 = 0

1) > 0

(c)

(d).

(e)

(f)

(8)

(h1)

(i)

10. Find

Ix -31. >2
LYi

+ 11 + 2 = 3'

x2' - + 3 <0
lx - 21 >0

x - 8x2 + 15 >

ix - 11'< 1 and Ix + 11 > 1

x
2 + 1 . > 2x

the truth set of each of the following

-7

sentences, where

177 x is th@ first variablfor the indic ted domain R of

x and y.
, I. .

(a) Ix! + y .-71, R'= set of alLintegers greater than -4..,

(b7 lx ÷ 1Y I F-:#):. R= setlof all integer gr ater than -4:j
? - ..,

(c) I X I + ly) ,=.4, R.= setlof all;intege

,

4.1w

. S '
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46,

,

*.. -(0 14,-. a and x + y = 1, R = t1,2,3,...)

< 3 and x + y = 1, R =41,2,3,)

3.26

(f)' (x..+ y)(y L 2) < 0, R = (0,1,2,3)

11. Draw theiraphs of the following sentences for the indicated

domain R of each of the variabbt. (Consider x- as the

first variablg4)

*;(a), Ix' + y = 4, R . set of all real numbers.

(b) Ix' < 3 and lyj < 2, , R = set of all integers.

.

(c) Ix' + IA <1; R =, set of all real numbers.

(d) xy > 0; .., R = set of all integers.

(e) (2x - y)y < 0, R = set of all real numbers.

If) lx YI (x - 1*H>-0; R = set of all real numbers.

(g) (x2 + y2 - 4)(i- y) < 0, R = set'of-all realtnumbers.f
12. Consider the field described in Problem 12 on page 3.15.

4 ,

If the usual order for positive integers is
411

taken as the-,

order for this field, verify by finding counter-examples

` that the order axioms are not satisfied.

13. .,Define an order for by the.definitiOn

a{ b< lal < Ibl, a, b
With,this definition, do the order axioms hold?

Let us take a different'set of order axioms:
-

here

such hat
A
1) fbn each

a subS t of olalled s ive; numbers

n xactly one of tyre {,, ollowing,
q

,
1

a' is positive, -a = 0, -a is pos tive0..---

* .

is truer

E. I .

(39

d

a
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(2) if b are positive, so are a +'b and ab.

Now diAne a > 0 to mean "a is positive" and a < b

. to mean "b - a is positive". With these aicioms, prove

that 01 to 04 follow as theorems. .4

41. Development of the Real Numbers in SMSG -I. The preceding

sections outlined an abstract development of the structure of an

ordered field from a,set of axioms. The real numbers are a model

of such an ordered ilield; that is, the eleMents 6f-e. may be.

identified with real numbers. The rational numbers also satisfy;

the ordered field axioms, This sort of development gets to the
0 *.

heart of the question: What is elementary algebra made of?, It

is the kind of development that a, teacher of algebri should'.

ekperience and understand, if possible.

But how should the properties of the real number system be

presented-to tudents in a first course? Certainlir not ajstractly
it

from a set of axioms.

The writers of SMSG-F assumed that a typical student brings
;4'

to 4 first course a fairly exteribive set of facts about the non-
=

negative real numbers, the so-called numbers of arithmetic. To

. be sure, nis knowledge may'include very little about irrationlls; he

1

may be able t perfOrm the operation of

ato

4

xtracting the square root

1

A
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of 12 to a given number of digits,. but here he probably "thinks in

terms of an operation on an integer_rather than the approximation of

an irration ber. Co*idering only the numbers of his experi4rice
gi-

he is led to "di cover" the Commutative, associative and distribu-.-
a

tive properties. These are then assumed true for all numbers of

arthmetic. the same procedure establishes the pro erties of .0 and

land the four order properties. In the process, he Perience4ra
0

good deal of review and reexamination of arlihmetict.TLe,"diOgnery"
Al.:

isgenhanced by associating the non-negative reals with,theclioints;

a half-line, and the operations and ordtr relations.areiven

geometric meanings in terms
.

of points on the (lumber

Now the stage is set for the crucial ;Step. In Srder..--to' °Om -

pl te the picture of the 'real number system, the negative reals

mus somehow be introduced and their properties establifthed. It is

quite atural for a student*to accept a set of numbers corresponding

to poin on the left half of-the line. It is also natural to

select def itiops of operations on thes.cnew numbers in.such a way

that they fog ally satisfy the saw kind of properties enjoyed by

the non-negati

This present a problem. Is there a way to define addition

d multiplication f .h new flusters_ o_that the tots. set oPsys

the axioms of an ord- d field? Ist re-only one ma ?

We first show tha there is a way, to dothis.

Thetpegative numbs

a

are defined by a one-to-one correspondence
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4 4
with the positive's, marking the negatives at corresponding ditances 0

tq the left of the 0 point on the line. Then the resulting numbers

are found to, have the same order roperties as the positives with
\

respect to the number line if "greater thap" means "to the right of".

Now the student V told that the total set o; numbers, which
/\,

rporresponds to the set of all the points on the number line, is the

.set of real numbers. These numbers obey the order axioms Oland 02.

kAs far as the student is concerned, 03 and 04 have no meanings

until addition and multiplication of these numbers are defined.)
0

It remains to define a + b and ab fol.' all real numbers a and

b itInsuCh a way that all the field axioms are satisfied e(again,

the student
7
does not think in terms of axioms, but of familiar

propertieS). There, is no problem when a and b are positive
A

or zero?' Students already know how to,add, subtract and multiply
,

such numbers. This suggests the possibility of forming general
r4,

definitionsof sum and product in terms of operations on the non-

negative number's. There i\a.Pitfall*here that Must be coped, with.

Unfortunately, the set'of numbers of arithmetic is not closed under

,subtraction. So we must use care in applying subtraction in any

definitS_on. At this point a student can determine b for

. numbers of arit etic only if a > b.

sitethe id a of the o site of a number in introduced. (This

word is selected instead of t e usual negative, because it do s not

have "ambiguous meanings; too often a student insists that theriega-

r *NA



4

r
3.30

4

tive of a number must be. a negattive number.) The opposite of a.

real numb is defined to be the number on tile opposite side of the

from.0 point on the, line at the same distance from 0. Thus the apposite

of is 4 or 5' is, etc. The opposite cif 0 we take to be Q.

Thete is o 'confusion between the symbol for, the opposite and the

f

symbol ,indicating a negative Dumber. Note that "-3" represents 44..

( neetive nuritr; it also represents the opposite of ,"31. Also

"-(-3)" represents the opposite of the opposite 3 as well as the .

.,opposite of .,.34 botn of which .are 3. 4

Nog we ciel?'ine the absolute value of 'a number to be the larger

Of the nUmberiand its opposite:
. ,

absolute value' of a = lal = larger'cit and -a

Since one of the numbers a and -a must be positive oi;zer and

a pbsitive is larger tilan a neg4tive, it turns ovt th la I 1;:l for

ank. rpal number a 7-Inc other words,- for ani real mberr-a, I a I is

a number of arithmetid. Now we are .ready, to 4efine--k +,,b for 'any

real numbers a and'. b.

The student ed into the definition of the sum of two
4t?

numbers by having him 'eo ider gai is and losses n business trans-
.

s . actions. Quickly he catche on to the intent go the. dei nition.
t

,-;:.!t i

Then after many exercises he is invited tO .dA:4coveg he d inition
, 4..

.

formally, as follows:
1 .

r..;$, V
.:_,

.
i

VF
, f-f

If a and b positivApr zeta, 'a 4',b 'A., tile .usual sum o
.

'...±.: r'
number's of arithmetic

.

r ..i,:.

')N1 ';:,4 ,

.. .

4 .

,t:'Y
, .4,,,

I : ,

I $

I

. 9`3
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\
b

I \..)

V a < 0 and b < 0, then a + b = -()al + Ibl); that is, the

-sum is defined as the opposite of the sum of two numbers of arith-

4petici -hence, a negative number.

Otherwise, if laI 2 Ibl, then

#ja - Ibl if a > 0 and b < 0

t
, a + b =,

**1k

-(Ia) - Ibi) if a 0 and b, > 0:

if Ibl lal , the

a +

\ .

- ( )1 3 1 . . Lap if a > 0 and b< 0

,ii

- 1131 - Ial 'if a <-0 and b > O.

?,

Thus, we have succeeded in defining, a + b in. eatfi case ,p,s a number

of a tic or its opposite, where the definition,* utilized

addition, permissible subtraction, and opposites of numbers of

arithmetic only.

Now'it is a straightforward matter,'.although too tedious for

the student, to show.that

a 4-'13=b+a and (a + b) +c. 4 + (b + c)
. .

for 411 possible cases of a, b positive, negative or zero. Hence,

the operation is commutative and associative. Furthermore,

ac ordi i to this definition, for each real number a there'is a

un(que um er.-a, its,opposite, such that
)

. . a + (-a) = 0;
J I

.
i

also,

a + 0 . a, forevery a.

It remains to define ab for any real numbers, a and b. Here

sa

.

94
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,

We are motivated by the fact that we want the commutative, associaP
. e

tive and distributive properties to continue to'hold. For example,

what should be the meaning of (3)(-2)? Of (-2)( -3)? We know that

0 = 3.0

p = 3(2 4.,(-,2))

Et

= 3(2) (3)(-2 ) if the distributive property is to hold;

0 (3)(-2).
p.

We already have that -a is thonly number& x such that

a + x O.

Herr, -we must take (3)(-2) to be,-.6 if the distributive property.

is to hold. Continuing, **,

0 = (-2)(0) (., if the property a.0 = 0 is to hold,

,,-

= (-(3 + (-3)) ,'

(-2)(3) + (-2)(-3) if the distributive property is to

) ....
hold:)

. ,

04 -6) (-2)(-3) if the previous result is to hold.

Hence, we must define (2)(-3) to be -(-6), that is, 6.

Thee exampies suggestthe definition:

kartbl./ if a ,> 0 and b > 0, or a < 0 and b < 0

'alibi) if a >0 and b < 0, or a < 0 nd b.> 0

, 0 ifa . 0 orb = O.

Again it is easy, but detailed, to ve ify that

= ba and (ab)c = A

for all possible cases of a, b negative, zero Or pbsitive.-

95.
is



e$,

O

3.33 °

Then, with more effort, it can be shown that

a(b + c) = ab + ac

A

41.

for all po'ssible cases. Also, a.1 = a for all a, andefor each

)

i

la' 7/.0 there is a unique. reciprocaa
1
- such. that a'...

i = 1. .4

a a

Thus, the set of numbers consistifig of the set of numbers of arith-

,
.,

arith-

meti' and their opposites satisfies the axioms or an ordered field:*
4 ri ..t .

. s

,-
C"

''''' It is recommended that teachers carry out some of the proofs 4,1-

.:.
;mentioned in thepreceding paragraphs. The vast majority of stu-

dents willbe willing to accept the fact that such theorems can be

4- . .
.

,,proved, buethe more alert ones may want to try the proofs themselves
4i.

,
.

,
.

4.

and nhay need some guidance. .

, .,
,

r

%
4 v

,

,tste hAve shown tht 'there is a way to define order and operations

-
.

i .

on pairs oS
#

nega
\
ve
\ ,

numbers so that when theSegatives dx:e attached

.... ..»
. # .t

.1.° y
tp,the non-negatives the resulting set of real numbers -has ,the de- ,c'

_;_-=
sired field properties. It remains for 1.14A.Ahow that given the.

...

.wholes et of non-negatives'and Ofgatived along with the known prop-
O

erties of the non-negatives, there is o ly one way to define order

.
and the operations of addition and milt plidation so that the\hole

set of numbers satisfiesi^the axioms of :n o dered -field.
, r 0

.

Let us be careful here to lay out c _what is k OWD and.whate.
I i

aritliMetic 4he non
1"7"-'-

qf these numbeTs.

is te proved. We are given the num era

i
negatives and the meanings of '4=', for any pa

We hen, attach to the non - negatives 'a et df,numb

21,um ers and ,write

J

^

calaed negative

4.r4

9

K.
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to indicate any arbitrary meanings of addition, multiplicat

. ,order of pairs of numbers., The negative numbers are then d

interms of the positives; Corresponding to each positive

a there Is a negative number -a such that a q) (-al = 0.

ion and

efined

sume further that OD , E) have the conventional meaning

umber

e

ol!

+,' , ,< for pairs Of non-negatives and that stbtraction of

negatives is defined as

a - b . a ( A ) (-b) for C p
) ,

With the assumption that thqltotal set 'of numbers is en ordere

field under Q :. 0 , that must be the, definitiOns of t

symbols?

Prom the first it is evident,from our assumptiOn that for a

non-.

cr

ese

ny

two numbers'of arithmetic, a and, b, (0 S a and 0 S b), we hay

(91D = a + b, *1,0 b = ab, a b 1...> a <.b.

That is, , { haeve the conventional *leanings for pairs of

non-negatives. 141,gparticular, note that OS a 0 < a and

-(-a) .-. a.- .

. , .

Now what is the meaning of x y for any real numbers x and y9

e

Consider'the case of x and y negative:

4.

t
O

1

9 7



, 3:35

xb.(-x) (-x)

AL

Y® (-x)

0G (-y) 'Eye (-x) I C5 (-Y),

03

F6 4

03

F6, F4 P:

(-Y). < (-x) , since 0\,S (-x), (7Y).

But by.Theorem 3.20, with c = -1;'we.have A

(TY) < (7x) 4==> x < Y,

so ttlaty,

. x y4=6 x < y.
r:

In particular, for any negative number x, its additive inverse,

is positive and 0 < (-x); then

< (-x)4==> x 0 x < O.

Next, consider the case of x negative and z non-negative:

x y4=:, x 0 (-x) y'( ...x) , .03

o Y ) F6

.g= 0 < y (-x) , since 0 (-x), y,

,4==> x < y.

Finally, for the case of x Dom-negative and negative:

x Y<=t x (7Y) 'Y ED ( -Y ) , 03

(-Y) 4 0, F6 .

4=6 x + (Jr) i 0 since ;x and 0 (-y),

4=>x + (-y) < 0.

A
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But x (-y)

cannot be tru

bitrary order

3.36

is non-negative. This contradiction shows. that y

e for x non-negative and y negative. Thus, any ar-
,

must have exactly the meaning of the conventional'

< fof all real numbers.

Next het us. show that fox any realvnumbers x andv.y, x0y must

have ..1.1e same meaning as xy:.

Consider the case of x non - negative and negative:

0 - Ye ( -Jr) ,

x00= xQ<<rp( -y)]

Hence, ,

0 . xay ® x0 ( -Y) ,

F6

E5

F3

0= xO y 0(x)(-y), since. 0 < x and 0 < (-y).

x0Y = [(x)(-Y)J
L

Elki 1Y1) )

= ICY .

F6

The case of x' negative and y. non - negative' is handled by ?serving.

ht-x0y =y0x forail real x and y.

There remains only thee case of x And negative:

0,= YC)(-Y) *

x00 = x0(yc)(-y)] ,

0.0(0) = xoYC) xC) (-Y) *

a

F6

E5

0 = x0y0-'[(-x)(-y)] by the previous result.

9 9



Hence,

=.- [-[(-x)(-y))1,

= (-x)(-y) ,

= lxllyl,
.= x:y.

3.37

Thus, for all real x and y, x0 y =

There remains the operation We shall show thated.t must

o F6

have the'c.onventional meaning of +. First consider the case in

which'x and x are negative: 4

(k&Y)C5.[(-x) 0)(-Y)] = [x® (-4) ® [Y®+ (-y)] wa, F2

0+0 , F6 c A

= , ( why ?

x®y = -,[(-x)e (,-y)] , F6

= (-y)], since'0 S -x, 0 S _y,

= X I + 11
10.1"

0

But this is the definition of x + y for x and y negative.

. \,
Hence, x ey = x + y, for x and y negative%

For the case of x non=negative and z negative we needtto'-

.4 Hence,

recall that if 0 < b S a, then a C+ ( -b) = a - b; and we must'cons2.-

der two subcases:

Y< 0 s x and 171 s x:

x xe-iyo:, cif y < 9; then y = 1 1)

= x lyl

100
5,
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( 2 ) . y < C S x and x S ly1 :

x-eY = x ®( -1Y1)

- ( ( -x) © ly I
) , since -(a Q P) = (a) 0+ (-1?)

dc-x» , Fl

= - ( I y I x)

= x y.
s.

Finally, for x < 0 s y we use the same arguments as abov.4'

knowing that x 0y ,= y 0 x fo/all real x and y. Thus for any real

numbers, x and y 'it must be ue that ,

x0y x y.

Exercises

1. 'Shod that the definition of ,I al given on.:page MO is equiva

lent to:

1

[

a if a 0

-a if a < 0.

2. Provtl.: (a) abl .= lallbl

J

(b) 1-al =1a1

(d) If 6 > 0, then'"la < b < a < b.
0

(e) ,la bl S lal 1bl
O 0

*(f ) If 1 al = (1: = b2 0 0,

3. Solve: (a) lx - 21 =
1 x 1

)" 13 -

3,'- xl < 1

L.

f
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(d) fx +,21 = x
i

(e) /.1x, 21 < 1 .and Ix. + 11 < 3

(0 / Ix + 21 <3 or lx = 11 <2

''sg1-1 l 212 + lx 21= 2

(1)' I2x + 11 > 2 and Ix + 21 < 1

11--. , By considering, all possible cases, prove the commutative

pmpirties of addition and multiplication, assuming they
02

are true for non-negatives ;and using the definitions-9

i?addition and multiplication given on page 3.31 and pa e 3.32.

5.' Show that a1 = a for every real number a, assuming it

true for non-negatives and using the definitidn of

t multiplication on page 3.22.

LO

tr

Q

;

"1

a
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aapter,4 dP-
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SUB-SYSTEMS OF THE REAL NUMBERS

I,

Before completing the list of aiioms
\
that describe the

.
. .

abstract system whose model 'is the set of real numbers (this will

- be.-done in Chapter 5) let us show why the-list is not already

.

dompl9te.' 'To do this, 10t us take a different ievw.

of the'rell

,c/
number model. Instead of looking at real numbers ek toto, it

.

will be instructive for us tocohs

reals_and study the properties of

'process we Oall'find onelibroper s
, 1

itself is an ordered field; thus,

ider certain subs-systemp of the

these smaller systems. In the

ub-system of the reals which

the axioms for an ordered field

db not pothpletely'dIstinguish the systeM of real numbers from one
4

of it's proper sub-systems, h

1. ° The.Natural gdmbers. -IT' We identify the Set with `tie

get R of real numbers, then R contains the elethent 1, by F5.

We also know by Theorem 3.28 that 0 < 1; 'thgt.is, 1 is a

a pdsitive real Aumber. Then Oi< 1 + 1; by 03. The re,,1

number "1 + 1" is called "2". (This is strictly a definition,

ar'itrary new symbol to abbreviate.theswbol "1 + 1".) Thus,

1 < 2, 1).' '02, and 0 <,1 2. In the same way we find that' .

1 + 1r< 2 :I: 1, arid, abbreviating. "2 +1.1Hto' "'3" we have '

< 1 <!2 < 3. This process is cOnOcnuegi by abbreviating

c tf

r

..ot
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.

113 1" to "4" + 1" to "5", eta., do thdt

0< 1< 2< 3< 4< 5 < .

The real number obtained by adding 1 to n is called the

successor of n. .

The subset N of R consisting of.1 and every rep`

number which is the successor or a number in N, and

no other real numbers, is called theset 'of natural

numbers.

Since 1 is in N, so is its successor, 2; since 2 is

so-LS its successor, 3;' etc. Thus

The reader should prove to].his own. satisfaction that there is no
'7.

greatest enment inN. (Show that the assumption of a greatest
.

, element leadsjo a contradiction.)'

Note that the natural numbers are, ordered,, and each Is a
4

positive real umber. Since there 'are real numbers which are not

ntural numbers, such as -61 (Why?)f then N R; hence, the set

,ofalatural numbers is. a proper subset of R. The following is a

'1A.s.t.of dome of the properties of N:%

(1), Closure: Thebet Nis closed under addition, and

'multiplication. It is not closed under subtraction'or

division. The 'reader should' verify that 2) and

1
1,p 'for-example, are not qatural numbers.

a 1 0 4:
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(p) Finite induction. If a set S of natural numbers contains

1 and if S contains n + 1 wheneiter it contains n, i

,
.

then S = N. This property of the natural numbers,

called finite induction, is a direct consequence, of the

definition of N and destrib'es conditions under which a

set of natural numbers contains all the-natural numbers.

(3) Well ordering. ,Every natural number is-greater than or

equal to 1; that is, 1 is the least element of N. An

ordered set, each non-empty subset of which has a least

element, is called a well ordered'set. Hence, the set '

of natural numbers is well ordered. This property .off
irfot

thenatural numbers follows from the principle of finite

induction. The proof is left to the reader.'

(4) Unique factorization. We define a number p, in ,41 to be

'a prime if p.> 1 and if p cannot be written as the

product of two natural numbers between 1 and p. It

can be shown that every natural. number 'greater,than 1

can be written, in only one-way, as the product of primes..*

This fundamental property is called unique factorization.

The set N is infinite, since there is a proper subset of N

whose elements are in one -to -one correspondence with the-elements

of N. (Describe such a proper subset of N.) We say that a given

*See paA 23 of What is Mathematics, by Courant and Robbins, forpa.
careful proof of this property. Notice how the-fact that N is well
ordered enters into the proof,

1.05
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infinite. set is countable*,or denumerable if it is in one-to-one ,

.0-correspondence with the set N. Thus, .for example, we shall show

in Section 3 that the set of rational numbers is countable.

As a consequence of these properties we observe, first, that

the set N is of'little use in the solutions of equations. Since

N lacks closure under subtraction, not even the, equation a+ x=b,

where a and b are in N, is guaranteed to have a' solution in N.

On the other hand, its property of finite induction leads to'a

technique of proof which _can be stated as the:

Principle of Finite Induction.' Let S(n) be an open sentence

with one variable n. If

(1) S(1) is true; that is, if the sentence is true 'when
4

n = 1, and

(2) S(k) true S(k + 1) true; that 'is, If the truth of .

the sentence for n any natural number _lc implies its

truth for n = k + 1,

then the truth set of S(n) is the..set;Nr the whole set of

natural numbers.

Example 1, Prove:

For any natural number n, n > O.

Proof by\finite induction:

Let. S(n) be the.sentente: n > 0: Then?

S(1) :', 1 > 0,

41.

S(k): k,> 0,

. S(k + 1 > O.

() 6
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By Theorem 3.28' we know that Sc(1) is true. Hence, 1 is in the

truth set of S(n). Next we'prove that S(k) S(k + 1).

k > 0,

,k+1>0+1,

by hypothesis/,

03,

k + > 1 and 1 > 0 + 1 > 0, - 02.

Thps w:p have also l'rewn that if k is in the truth set of S(n),

then so is k + 1. Hei:ice, the truth set of S(n) contains all

the natural numbers, and the theorem is proved.

Example 2. Prove:

For any, natural number\n, 2n > 4.

.
.

Let S(n) be the'sentence: ,211f> h. Then

o
S(1) : 2?-:> 1

1

4 S(k): 2k > k

v" J r
1

...

21C+1 61., -
S(k+1)

First, we observe that S(1) is Next, assume ,S(k)' is

true and from this deduce that S(k+1, is:true.

9

'
2
k > k,

2.2i> 2k,

' k k+1
Now, 2.2 2 and 2k > k + 1,

Hence, Ito, 2
k+1

> k. + le, 02

This completes` the proof .

,

. 1,
The fact that a natural number'can be factored into prees inc-:-

'

only one way is used ,con tantly in aritklmetic compaAations.
.

.
\

1

.

othesis

sw

4
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example,

198 = 2.2-323 22.33 and 360 =*23.325,

we may write the sum ,

3.,
.3

1

I15-8

1

- 70
1 1 2.5

+2 32 .3

13

+ 3
2

2
.3 .5

13

3 3
'2 =3 .5 2

2
3

.3
3
.5 1080

Notice how the "least common denominator" of the fractions is ob-'

tained in terms of-the prime factor izations of t,11tlenominectars

, a is a factorIn general we say that for' a and b in N

,of b if there is dome natural number c' such t

T4s, 3 is a factor'of 12 because 3.4 12.,

factor of b, we say that b is a multiple of

a multiple of 3.
4

hat ac = b.

aLt a ist,,i23,014

a. Thus, 12 'is

If a is a factor of b, we say-that a divides, ome-

------tiTnes written ""alb". It follows thatI
alb and alc == al(b +

\
w

9 , Many interesting questions about pimp have i5 answered
'' \

,L,S._

and some still defy Solution. For example, J.,t wiFishowrrbY.-Eudlid',
\

: \
. that the set P of primes is infinite. The prooto4dis,easir

and

alb or aic albc.

These, and 'other results which the reader can prove`, are useful, -in

the factorization of polynomials. (See Problemsj9-.11.)

3

obtained by coniTadict.-4, . known whether

*See A1/4 Mathematician's Apology, by G.Hr Hardy, CamIridge, p.\

1 (0

my.
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11.

every even natural number can be written as the sum of two primes;

f

ypt no one has found an even number which cannot be Written as

ach dsum. 42 = 23,+ 19, 68'=.61 t 7, etc. Also, certain--

primes occur in pairs as consecutive'odd numbers: 3,53 '5,7;

11,13; 17;19; '29,31; etc. -It is not 4own whether the set of
.

such prime pairs is infinite.
4

In,summaryi N(= R, N R, and N has the prdperties of

'closure under addition and.multiplication, finite induction, till

ordering, and unique factorization.

.EXercisps

1. 'Prove in,any way that each of the following is true for every

natural number n:

(a) 1+ 3+ 5 + 7 + + (2n - 1) = n2.

(b) 12
22 4: 32 42 n2 2. ncn + 1Tn + 1).

/'

(c) n
2

1 n.

4.
2 is a factor of 'n + n.

o,
(e) '3 is a factor of n3 - n + 3.

(,r) 4' is d factor of '7n - 3n. 4 Iv-

(Hint
7k+1 3k+1 7k +! 3.7k04. _,3k+1)

o

(g) 13 + 23 + 33 + .... +n3 =
dt

(1 + 2 + 3 + ... + n)2
Si.

ri. '

2. Is the set N a group under addition? Under, multipli'c'ation?

If .not, what is lackined' ,

1.09
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3. If 2 is a factor of a_ natural number n, we Say' that n is

,
even; otherwise, n is odd. Prove that for natural numbers

a -and'
t _

(a) If ,a is even and 'b is) odd, then a + b is odd

and at) is ei/en.

(b) If a is odd and b ,is- odd, then a + b is even and

a)o is odd.

, .

(c) If a is even, then a2 is even.

(d) If- a
2

is even., then a is even..

4:. -Show that if a is iri N, and if 3 is a factor of:. a2,

then a is a factor of a.r
,

5...' Show that if a

N, then a + b.

is in N and .b is a real number not in

is not in N.

62 Prove there is no natural number between .0 and 1. (Hint:

Prove; by finite induction that S(n): n > is true for all

naturalvnumbers )

Pro v finite indildtion that N is well orderet that is,

that every non-empty subset' of N has a. least element.

(Hint: Let S.,(n) -be theventenee "Any s,et of natural numbers
-

that contains a number less than or 'equal to

element. "),

e

o
.

,i?", r:

n has a least

t,'
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8. Prove that if- N ivwell-ordered, then it haS' the property of

'finite induction. Hint: Let S 'be a subset of. N that

. contains- 1 and contains n + 1 whenever it contains n.

Let S, be the subset of N containing-all elements of N

S._ Show that is empty. .

9. Prove the following, for a, b, c -14n N:

(a) alb and aic = ar(b + c)

(b) alb. or alc ==== albc'

(c) alb' and al(b +

OA!

('fl and arb + c) c (/c means that

not p. factor of c.) Hint: Prove the eontrapositive.
.

(e)i For p a prime, Plbc.,=,=*. Alb or plc.

is?.

4:

10. Useythe results of Problem ,2 and. uniq e factorization to find

two natural nambers c.cif-Possible, whose'

.(a) product is *24 and scuir''Sr 14,

(Let be = 24 and b + c =:14. Now' 24= 2.2.2.3:

Since 2,(24 and 2 is prime, then 4b. or 21c.. If

21b" and 21(b -. c), then 21c. Hence, 21b1 and Trc.

Since 3124 an 3 is prime, 31b or *31c. But
,

° 3,X(b + c);. hence, if 31b, then 3%c, and if 31py.

'.then 3/b. Thus,.both b and c contain a factor .2,.

but only one ofsb,

conclude that either

b = 2.3 and c =

The second of these po

(b)' product is '72 and s

contains the factor 3'. We

2.2 or b= 2.2:3° ana c =2
Ssibilities gives b + c = 14.)

um is 22.

IL



' (c) products is' 150 %and sum is 25.

(d) :prodlici.\is. 84-4-and sum is 24.

11. Use the tecbn ques of Problem 10 to factor the following

polynomials, 1,f possible, into polynomials with coefficients

in 1 N,.

(a) x2' + 8x +

,(b)" x2 + 15x +\56

(c) x2 + 45x + 180 ,

(d) x2 + 32k 2'52

2. The Integers., The set N can be enlarged by attaching to

it the real number 0'and the :additive inverse of each of the

elements of N.

The subset I of, thei,eal numbers consisting of all

the natural numbers, p, and the additive inverses

of all the natu9 al numbers, and no,others, is

called the set o integers.

The system of integers is ordered; fat we know-that

2 > 1 and *-1 < 0, so that ' (-1) (2) 0-1)(a) by Thebrem 3.26,

and, hence, -2 < -1 < 0. In the same way we find that

{ -3 <-2 < -1 < 0,, and in general

. < -4 < 73 < -2'< -1 < 0 < 1 < 2 < 3 < 4 <.... .

.

But I is'not well ordered, sincedthere is a non4mpty subset

of I which has no least element. Such a subset is the set of

112
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negative integers. To show th..s we need only note that if n is

in this subset,"then n 1_, is also, and n - 1 < n.
.

There are "real numbers which are not in I, such as 1
7.

This seems obvious, but it must be proved. The trick is 6 show

that is greter than every negative integer; is not zero, and

is less-th-anreVeryp-ositive-Integer-i-and;-.hemce, is riot in

,141. 1 y/
To see this, note that 2 > 0 7 0,;. 1 < 2="kllymv <-()k*V

< 1; and -3g' / CY. Hence, 4- is not a"ftegative integer,

-since it is greater than 0; is not zero; and is not.a

natural number (positive integer) since it is less than 1. Thus;.
.

we'conclude'that is not in I and that I is a proper subset

bf R: N C: I C: R, I R, I / N.

The set I with the operation of addition is a system with

the properties of a commutative group. The reader should verify

this fact after reviewing the definition of a group. The set I

with 'the operations of addition and multiplication moreover is a

system which has the properties of a oommutatiVe ring. Again the

4
reader should verify this. The ring of integers has the following

_..\

properties:

yq

(1) Clpsure. -The set I is closed under addition, subtraction

and multiplication. It is not closed under division. Thus,

in the transition( from N to I we gained the property

Of closure under subtraction. Now for any a and 'b in

I, there pis a Unique solution of a + x = b in, I, but

not of ax

1 1,'a,
..
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(2) Unique factoriza ion. Each iriteger other than -1, 0, 1,

can be written as 'the product of pries and 1 or

in only one way; hat is, integers have the property of

unique factorization.
/'

(3) Countability. The set of. integers is countable. To dhow.

this, "Ish a one-to-one correspondence with N

.- in the following er:

N

0 <-7-7,. 1

1 < 4 > 2

-1 3

2 4

/

(4) Division alogorthM. If b is any integer, the integers

..., -2b, - , 0, b, 2b, ...

are multiples of b. Given any integer a; it ids either

equal to one of the ltipIes of b or it lies between
.:

two successive" multi7es of b. In the latter cage, we

mean there is atl integer c such that (for b positive)

bc < a < b(c'+, 1);"

5, .etc.

that is,

a -hc >0 and be < b.

' Thus, we may set a 0 bc.+ r, where r is an integer

suchthat_O < r < If a is a multiple of b, then

= bc.+ r, with r = 0. If b Is any integer'; we see

that there is ari integer c such that

.a ='bc + r, where 0 < r < Ipl.
t,

1

R
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Here we have the important divisio algorithm which

guarantees that for any two integers a and b there

is an integer c, called the quotient, and a non-negative

integer r, called the remainder, such that a = be + r

and 0 < r < 1bl. 'or example, if a = 21, b = -5,

we 'may write (-5)(-4) + 1. If a = -2, b = 5,

then -2 = (5)(-1) + a. If a = -21, b = 7, then

-21 = (7)(-:3) +'0.

(5) Dedimal representation. The division' algorithm for

integers allows us to write any integer in a decimal

representatibrirGiven a positive integer d,- there

are integers .e0, c1, c2, cn from the set

(0,1,2,3,...,9) such that

d = c
0

+ c
1
10'4-

2.
102 + + c

n
10n.

The c's are called digits, and n is som4loatural number

or O. To show that such a representation is always possi-

ble', apply the division algorithm to d and 10, Obtain-

ing

= d
1
10 + c0, O.< c

0
< 10.

If di > 9, then apply the algorithm again'to di and

10, .gii:ring

d
1

=',d
2
10 + c 0 < c- < 10.

1

Continue this process until a quotient' do less than 10

\
/ ,.1

*A representati6 of A number is a manner of naming the number.
.

.

, 111
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is obtaihed this happen in a'finite number

of steps?):

d
n-1 = d

n
10 + c

n-1',
0 < c

n-1
< 1

d = c , 0 < en < 10.

Then, updh eliMinating (11,q2, do ..from these

equations we have

d = c0 + c110 + c
2
102 + + c

n
1

/
If d &s a negative integer, multiply the ecimal

representation:q 10. by '-1.

Although it is cup,tomary to restrict the digits to"

integers from the:vs-et {0,1,2,...,9) we may 1 t the

digits be taken from any set of the form (0,1,2,3,,

(10-1-))", with p > 1, an represent d as

o
0 2p .-- cie- or

d = c .+ c p
.,.

For example the ternary representation of d we
. ,

se
-

the digits from {0,12) Then 11 = 3.3 2

( A
,.

\

whi

base

= 3.1 + 0; hence,

11 = 2 + 0.3 + 1.32,

we abbreviate to (102)
three'. read nort,dh=two,

e
-11

,

In summary, *hen we extend the,set N to the set we lose

certain properties and gain others. The properties of finite

induction and well °raring are lost. Or the other hand, ,we gain

the important property of closure under subtraction. It should be

'noted in.passirig that computations iiith, and, representations of,
, .

+.7, . ,.
,

fi
116
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:

natural pumbers are extremely cumbersome lthout the services of

the integer 0.. Without 0 any form of representation must be
--

accumulatve,,such as the'Roman numerals.. Only with the intro-

duction
+t.

0 can representation be positional, that is, in terms

of coefficients of powers of some, integer. The fact that every
. ,

integer can be written as. a terminatinF'Oeimal is of great

importance, in calculations. (By "terminating\we teen only a

finite number
\
oreoefficient digits is requiredin the'reptesent-

\

ation.) The study of integers and their propertieS called the),

theory of numb rs, is one of the oldest and most fasei.n ing

areas of mathematics.

Exercises

-

1. If for integers we take similar definitiOns of factor and
.

matiple as for natural numbers, then the integer a is

even if there is an integer c such that a 2c

(a) Is 0 an even integer?
-.

(b) If a is an odd integer and - b is an odd integer, is

ab an 'cid integer?'

(c) If a s an integer and .a
2

is even, prove. that a d'4_

is even.

2. ` For ingers a and b, .recall that alb means "a is a

,factor of b".' Define the greatest common divisor of a._

p

and b; written (a,b), as, the greatest positive.integer d

such that dla and (lib. (Note that foi%any e such that

'eta and elb, we have eI(a,b).)

a.

1

`re

a.
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(a) COmpute, I-360,90; (30,54); . (73;462),

'(b) ,If a > 0;// p'rOve,that (ab,a4 = a..(b-jc).

7 3. Is the set of negative isitegers closed under addition? Under:

"subtraction? Under multiplOgation?

4. :By
(326) ten

We mean 6'+ 210 +

(a) Convert (4152) six
to the "ten" stale, that is, to

decimal representation.
0 n

(b) Convert (101100) two
to decimal representation,

0

(c) Convert (326) ten
to a representation in thie "three

scale.

(d) Convert' (326)ten to the "nine" scale._

5

0

5. Is the set. I a group under addition? Under m*Sg*ation?
as ,

If not, explain what is lacking. -
.

tflk

6. Is the set I with addition and rri iplica Dield?
.

If not, what islacking?
,'

7. Explain the usual algorithms for adding and multiplying,

integers, "carrying "`; and'subtracting integers in terms of

decimal representation.

With _the ordering given by the axioms Oi to 04 the setof

integers is not well ordered. Define a different-ordering

of I for which I ,is well ordered.

9. Consider the set of integeiaillb4,71;10,13,16,....,3k+1,:..-.).

Let us define a prime in this set be an elementgat panno

be obtained as the product of two elements in T. Thus,

4

A
1- I. 8

/
r
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4, 7, 10, 13, 19;22, 25, 31, etc., are priMes in T, whereas

16, 28, 40, etc., are composites in T. Can every composite

in T be factored uniquely into products of primeq in T?

3. 'The\Rational Numbers. The system of integers can b4

extended to a-larger system as .follows. Consider any integer q

in I sich that q / 0. Then by F7 there is a number
1

in R.

If p is an integer,,the product p(4 2= is a real number,
q q

since the pet R is 'Closed under multiplication.

The subset of R" consisting of all real numbers

that cane regresented in the form ,2 where p

and q. ire integers, 0:,-15&-calleLthe set

F of rational numbers.

theadjective "rational" here implies "ratio", and not the usual
.

, dictionary meaning "reasonable" or "sensible ".

S..,

'Here we should comment on the uses of the words "fi'action"

and "rational namber". It must be,remembered that a. fraction is,

not aThumber; f,is a syMbolwhfch represents a number. By .

definition, a fraction-hasithe fot y, y / 0, for any x and,:

y; that is,is it indicates a division P'rocess.' In partidular, if

X and y represent integers, then the resulting- fraction
;H2ft

represents a rational number. For example, the fraction

".17 "
represents a rational number, whereas, represents'a

number whichwe shall show is not rational. Notice that since

the fraction --- reprebeats the same number as the fraction
II It

/

1.T

1: 9
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nin
7 it represdnts a rational number. The point is that.certain

fractions name rational numbers and others do not, but all rational

numbers can be represented as fractions.

. Let us sha that the set F of rational numbers includes the

1
integers as a proper subset. Certainly, lc isa. rational number,

e

but not an Integer. Thus, F I. .Furthermore, any integet, ,n

1 n.1 n
may be written, as n = n1 = = which by definition .is a

rational number.,' Thus, I C F.

We see also that every rational numb9r is a real number.;1

-Thus, F C R. Moreover, f r and s are in F, so, are r + s,

. V - x, rs and (if s 0), by the results of Chapter3.

Thus, the eleoentt"of F satisfy axioms Fl to F7, and' .(F, +,

is a sub-field of Re It reaains to_show that F '/ R, that is,' '

there are real numbers which are not rational. Thisls the

problem that now confronts us.,'

At this point in the development We cannot find any difference

-tj between the rational and real number .systeMal-each is an-ordered

field. But we want the reels to correspond to the whole, set of

A

-pdintson the numDer'line, whereas we shall prove shortly that the

rationals cannot have this property. The distinction between the

reals and the rationals will be, made ,in Chapi'er 5 by assuming a

-final p operty,of the real number-system.-

Si ce F is an Ordered fiel4 it Must be possible to determine

which of two distinct rational numbers is greater. .

120
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To do this we need the

`Theorem 4.1 If a, b,, d are real numbers such that

b >.0 and 'd > 0, then

a any ad < be.
N.

Proof of.===-0.., I
Since b > 0 and d > 0, it follows that bd > 0. Then

F < (..)(bd) < (§xbd),
a c

adb bcd
d '

' ====> ad < bc,

The proof of C is left to the reader.

04

Theorem 3.121

.Theorem 3.17.

This thea,em provides a technique far ordering the rational

numbers. -Note first that if a, b, c, d are integers, then they

are real numbers. Note also that if the rational number- E has

,,Pq _negative, we can always Write it as 4

(2) = (2) =

where now -q is a positive integer. Hence, Theoreffi,4.1 will

apply to anygtwo rational numbers, Now we can determine the

relative order of any two rational'numbers by comparison with the

ordering of two integers. For example,

-8
> -- because (:;.6)(29) ?r,(-8)(23),

tha ,-,because .174 > -18k.

X21
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It us listsome:.properties,Of the ordered fTAIld of :rational
r.

numbei's: *

(1) Closure. The set P id closed under addition, pubtraJkon,

and multiplication. The quotient of a rational number.by'

a non-zero rational,number id a rational umber. .,Thus,

with division by zero excluded, F fs alsa closed under
. ,

division. In the extension from the int4gers to the .

rationals we gained a new closure prop Now for

any a and b in F there is not only a 'unique solutiorozm-

of a + x = b in F, but also a unique solution of

Z

ax = b, a / 0, in F. f

,
..

.E,

--* ,(2) Countability. The F ip countable. To establish this

fact let us write the rational numbers

...

'the following

J

o array: (Recall

I ,with a pO'sitivp
e ' '

o , s. ... lo .=-- -4 T

/

.

). t

,t3 I-
2

that any rational number.may be written
4

denominater.))

-1 1 2
T Icy T

T 10:4
3

-4
--

q 4q

44.

.

q

a

122

'44

rti

E.
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Then, moving-in the array as indicated by the arrbws,

starting with 0
we must eventually traverse every

rational number Whose'numerator is an integer and whose

denothinator.is a positive integer. The one-to-one

correspondence between N and F is 4'ornied as fdllows,

skipping a rational number if it has been encountered -

.previously (circled):
,ti

N

1

2

3

4

5 H 1

6 H 2

7 4--). -2

8' <--). ,

In this way we are certain that each rational number will

correspond to some natural number, and no rational

numbers will be overlooked in the process.

"c. o A

,

F
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4,22'

(3) Decimal representation. Every rational number r can 2.c)

be represented as a decimal. To illustrate the meaning

of this statement let us obtain such a representation of

the rational number 14: By the division algorithm, .
.

3

1'3 = 8.1 + 5, -5 < 8,

5.10 78.6 + 2, 2 < 8,

2.10 = 8.2 + 4, 4 < 8,

4.10 = 8.5 +0.

.

Upon dividing by 8 and successive powers of 10, wee obtain

24 = 1 +

='-fg + .1(4); Tg + 4(4)
2 2, 4,

10

1 13' 6

10
Br) 7ff) 1 + TO°

=12 + 0;
13 6

= + Tr5

10

10 10"

2 5
+ +

10 10'"

and from these equalities the set of inequalities:

13, 6 #,
+ 7.17-=1+7+ <1 +T

6 3
-70
6 2 13 6 2 + 4/4).< 4.+ .+

0 7 lo' lo

'6 2 5 1 13
1 +. + o 4.

We abbrevie this to:

13u = 1.625..

124
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Notice that for this rational number, one.of the

remainders in the division algorithm is 0 and the decimal

representation therefore terminates; that is, the set of

inequalities terminates in an equality. Of course; the

whole process can be shortened to the familiar form:

1.625

8 /13.003-
8
50
48

16

4o

The reader may wonder why_we bothered to write the set

of inequalities' above, especially since the decimal

'representation terminated. Another, example will show

the need-for inequalities; let us attempt to represent

4
the rational number yr as a decimal. Again, by the

division algorithm,

4.10 = 11.3 + 7, 7 < 11,

7.10 = 11.6 + 4, 4 < 11,

4.10 = 11.3 + 7, 7 < 11,

7.10 = 11.6 + 4, 4 < 11,

1,

Dividing by 11 ant successive powers of 10, we get

At.

125
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4 3 7, 1N
IT 7.6"

7 6 4, 1
TO +31f)'
4 . 3 7/ 1

1100 70 ;
7 6- 4,

Trv--T11000 "--1T
10 +.-- 10 );

4

4

11

A

3

3

0

3

6.

4-

4, 2.;

1')6 3 7/

6

10

6-

10,

3710

10f.

47 1
TrkIT)1010 4-

10

Notice that the remainders repeat in the pattern
11.

and no remainder can be zero. The resulting infinite set

of equalities gives,rise to the corresponding infinite

set of inequalities:

TO' 2:5

-3-7'
To 4- lo,--/z ro- lo7

3 6. ,3 , 4 3 6 4

175 To 4-
1Q, 10 . 10

/

3 6 3 6 4 3 6. 3 7

16 lo lo

Whenwe say that
.4 is represented )2z. the infinite
11.

4
decimal .3636... we mean that 11 satisfies every

inequality in the above infinite set- of inequalities.

The fact that the remainders in the above division

algorithm repeat with a fixed pattern leads us to call

the.retulting decimal representation periodic, and we

126
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indicate the set of repeating digits by superscript

dots; for example;

J

4
Tr = .3636... .

As we have seen, some rational numbers have infinite

decimal representations; -we shall now show that. if the

decimal'rebresentation of a rational number is infinite,
,ey

it is also periodic. Consider the positive rational

number E where p and q are positive integers IN

without common factors. The division ,algorlthm guarantees

the existence of integers c and ro such that.'
i

p = qc + ro, 0 < ro < q. t
I. '''','

,

Dividing by q, we havO,
*f, *- .

rn rn.
....

;

q
E = c + .. ...1 0 <

q 4.
--Y- < 1. ,

_ -i.;;

-NoWapply the algorithm to the positive integers.' '!0r0

and q:

.10r0 = qdi + r1 0 < r1 < q, \

.

.

for some integer al. Since r0 < q, 10r0.= qdi + ri '<10q

implies, that d1< 10. Again, dividing, by 10q, ,

r d 'r d
1

r
10 _J, 1 2.

q ,-'10 lOq' q -,"' 10 10q*
. .

-.'
-Now if r

1
= 0, the decimal representation of 2--

q
. .

--,...
r
1

c terMinates. If. Ml 0, then < 1, and
k . ,.

..,

di d'i r di +1

c + it 5. ti = e + 1-5' + 3.-t---ci- < c + -0-- .

.,
1127

1
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Now apply the algoiithm to lOri and q:

10r1 = qd2 + r2, 0 < r2 < q,

for some integer d2. Again we can show that d2 < 10

and that

r
1

d
2

r
2

d1 d2 r2

.2 c -I- 16 4. 7.7 1 TT.157I 7(74- 77TI; q

-Now

C

r
2 < 1

d
1

d
2 E

1-6 q
10

and

C

d1 d2 r2 d
1',

d
2
*1

+
10

+ c TO- .

10 q to-
If

2
/ 0 we continue the process until some remaXrider

r
i

is zero or until some remainder r
k

is equal to a

previous remainder rj, J < k. Thus must occur if no

ri -is zero beoause there are no more than q - 1

possible non-zero remainders n division by q. In

this case the decimal represe tion of k will never

terminate and the set of d is d
j
dj+1 d k-1 will

r peat without end. .-'

Thus, if a.rational number r has an infini:teddcimal .

representation it is periodic°, where we mean by a decimal

representation of r that for every natural number .k,

r satisfies the inequality.

kd
1

d d dk1
c + + + < < c IT)

.10

Where each d
i

is some integer in the set

28
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Agiin.we shOuld point out that the-digits-of the

representatiori of r may be restricted to any set of

the form
/

(0,'1, (b-1)), b > 1.

The development of the representation given above for

= 10 is quite general and does not depend in any way

on the scale or base b of representation. For example,

the rational number -pr may be represented in the "five"

scale as follows:

4

5.1

5.2

=

=

=

3.1

3;1

3.3

+ 1

17

2

=

=
1

3

1+ 70.=>1

2

< <2

4+ < 7 <

1 3+ 7 +

1 +
2

4 < 1

,

+ .7 4+

2 +

1+ 1 +

Hence,

4 = 1.1313.. .
five

= 1.13five.

4It can also be shown (see Appendix. A) that every

periodic decimal represents a ttonal number and only!

y
-ope rational number.

(4) Density. The set of, rational numbers is dense;. that is,

for' any two rational numbers u and v, there is a'

rational number w such that u < w v: Viewed on

the number line, this property asserts that any two

points with rational number coordinates, no matter how

I.

129
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close together, have a poLnt be ween them with rational

coordinate,. But there is no end to this argument; this

implies that_between any-two rational numbers there are

infinitely many rational numbers. The proof of this

property follows immediateli&MProblem 5 on page 3.24.

If a and b are rational numbers such that a < b,

then

a <
a2 + b

< b.

+ b
Since

a
2

s also rational if sa and b are

rational, the density property,is established.

At first thought, one would suspect that the set F, being

dense, corresponds to the set of all points on the number line.

There would seem to be no "room" between the rationals. This is

not the case. ,When we introduce a, final axiom for the real number
.

system it will be possible, to provey for example, that there is a

positive real number x such that x
2

2, that is, 17= 2.

We shall now prove that there is no rational number x such that

2x =

Theorem 4.2 There is.no rational number x such that

x2 ..2; that is , there do not exist two

integef's a and b without common'factors

such that x2 (ft)2 = 2.

3 0 .
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Proof: We shall use a proof by contradiction. Assume as part

of the hypothesis that there are two integers a, and b, without

a 2-common factors, such that (F) = 2. We i.nder1ine the restriction ."

"without common factors" because by Theorem 3.17 it is always

po§sible to reduce a rational number to such a form. Then

= 2 a
2

2 = 2152.

Since b is an integer, so is b2. Thus a2 is an even integeg/''

By the result of'Problem 1(c) on page 4,15, a is also an even

integer; thus, we may write

a = 2c, ',for some integer c.

Then

a = '2c ===* a2 = 4c2. 4

We now have a
2

= 4c
2

and a2 = 2b
2

, so that 2b
2
= 4c

2
; that

is,
102

= 20
2

. But c
2

is an integer, so that b
2

is an even,..../

.

integer. This mewls that b is also an even integer. We have p
,,

arrived at a contradiction, for if a and b are both even

integap they must have the common factor 2, contrary to our

original_requirement. Thus, there is no rational number x such

that x2 = 22"

Real numbers that are not rational are called irra4ional

numbers. Thus, 'IT is an irrational number.

Let us summarize what has been found. In the. transition from
. _

the integers to the rational numbers, we lost some properties. For

lone, we do not haveuniqUe factorization of rational numbers. If

r and s are any non-zero rational numbers, then r is,a factor

1 3

4

I.
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of s and s is a l'actor of r; that iS, there exist rationr1'

numbers u and v such that s = ru and _r Another

property we lost<is that of terminating decimal rep:esentation.
c

But we gained the .important properties of closure under divisidn.

(0 excluded) and density. .

This concludes the discussion of three proper's0-systems of
,

the reals:

NC. IC FC R. Ns

Which properties of F are shared by R? Certainly R has the'.

same closure properties as F. But it will be shown (see Appendix' A)

that R is not Qquntable. R is alto dense, and its elements can be
-..

represented in decimal form, although these decimals will be shown

to be non-periodic in gene 1.

What new propert oes R have? It will be shown that the

set of positive real
(

numbers is eloped under-the extraction of a

root. This means, for example, that for a in R the equation

x2 = a has a solution in- R if

property,from the stan

a The Most'imPortant new
.

nt of analysis and Oometry, is the fact

that R is complete. This will be the theme of the next chapter.

I

a

132



4.31

Exercises

1. ,Determine the relative, order of the rational numbers

-37 4 -12 47

71.'

ten

. .

2. The rational number () can be represented as the

deciMgl---# + -4 + -17 + -4 =,(.1875) ten'eg- 10 10' 10-

(a) Write the number (.302) four
in.the form of a rational

number in base ten.

,(b) -Convert (1.5) 'ten to a decimal in the four scale.

3. Prove: There is no rational number x such that x
2

= 3.

IN Prove: There is no rational number x swill that x3 = 2.

5. ShoW that if n is e natural number, then 0 < .5 1.-

6. Show that if n is a natural number, then 0 <
2

<
- n'

7. Consider :the set T of positive'rational numbers, with an

4:2

ordering given by the axioms_ 01 to'04.

(a) Prove that T is not well orde ed; that is, there is a

subset, of T which does not ave a least element.

(b) Are there.rational numbers whic- h are less than every

element oC T? ,Which.of these is greatest? ,

8. Using the division algorithm, develop the decimal representation

1
of 7'

!33
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9. Find the,truth set of thesentence,,

(x - 1)( 1)(2k-

if the domain of x'is the

(a) set'of natural numbeys,

(0 set of integers,

(c) set of rational numbers,

(d) set of real numbers.

10. Factor the polynomial x - 9 into polynomials with

= 0

coefficients

(a) in F, (b) in R.

11.. For the elements of the Bet of positive rational numbers, let

4*

us. define a prime p to be a number that cannot be obtained,

as the product of numbers it the set that are all less than

1 1
p. For example, s 'is prime because if ab = 7 and a,,

-b are positive rational numbers, then either or b, is
0 0

1 47, 7greater than . On the other h4hd; is composite, since

4 7 8 and .6 , IT
8 6 '4 477 are each less than .

. With thiS

definition of a prime, show.by a counter-example that the

po'sitive rationals do not have the property of unique

factorization.

a.

1:3
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Chapter 5

COMPLETENESS OF THE REAL NUMBER SYSTEM

1: The Completeness Axiom. Our attention thus far had been

on the axiomatic development of an abstract system whose model is

the real number system. Before we continue this development-and

bring it to a satisfactory conclusion, it will help to review some

geometric ideas. In geometry it is assumed"that the points of a Y sL

6

liRe satisfy a certain set of geomltric,axioms.* One of these L

states that a line"contains at least two distinct.point. Another

assumes that to every pair.of points A, B there corresponds a.

unique real number called the measure of the distance between A

ana'B% A third axiom says that given two different points A and B
%

,on.a line L, there is a one-tosone correspondence between the point6.

of L and,the real numbers such that

(1) A r.l.r.respands_to_:zer_o_;____

(2) B corresponds to a positive number;
4

(3) if P and ,Q are any pOiAtigon L and if y corresponds to x
-

/-
and 'Q to y, , then the measure af the distance bdtween P

and Q is ly - xl.

With A corresponding to zero, let us mark the point U tthe

right of A so that the measure of the didtance between U,and A is 1;,

*See liblume_II of this series of Studies in Mathematics: Euclidean
_Oeomet _Based on Ruler and Protractor Axioms, by Curtis, Daus,
an Walker.

5.1--

1 35.

6
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then assign the number I to U. It is now possibl-e;to

a `

'tt'*
, -prove- the theorem: If three distinct points X, Y,Z of the line.

have coordinates x, y, z, respectively, then, is between X and Z

., . .. .,

It is now apparent howjand,whi) we may form the uniVET corties_

pondence between the rational numbers and pointi-O? the number line.

The rational number E. , p and q in I andi,q 0, assigned to an./

if and only if x < y <j -or z < y < x

point as follows: Determine the point R to the rght of A such

that the measp_re)C_the distance__bet.ween.R and A is. Q L Then

assign the ositiverational' number to to the op t Rand the

negative rational number to the point R' on'ehe left of A and

,at the:same distance from A.

The construction of the point Ron the line is accomplished as

follows: By dividing the segment AU into lql e4owl parts, deter:

mine the- point Q such- thWtH6ffie'asups.o.t_the cl-fgttncepetween A

and' Q is 14. (The reader shtzuld recall how this-it &ine with

straight edge'and compass) Then lay off 11)1 o. se distances
*7,

, -

from Ato the right, terminating at a point R. -Th. distance between
-

_A and R then has, measure and' we assign the Tnitive rational

pumbey R,

4*I

13

It follows from'the seated geometric axiom theorem and
.L.44,41

the orientation of the rationale on the line that....It r and .s are

the coordinates of R and S, respectively, then

!,

*Theorem 4.1 on page 4.31 of Volume II, aSttadies" rhathematics.

136
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F < s < , R-is to'the,left of S.

A,

To prbve we cons der the three casgs:, (1) r 0 and s 0,
, ,...

(2) r < 0 and s < 0, (8) r < 0 and s 0. Incase (1) R and S
. .

are both to the right of A. Then, since 0 S r < s,..it follows that,:

\-.either R is between A and S or R coincldes.with A. In either case,
...

,.

R is to the-: left, of S. In case (2) r< s < 0 implies that R and S

-are Jptoth to the, left of A, and S is between R and A. Hence, R is
74:4

t.0 fhe left of In case (3) r <,0 S s implies that R is'to the

left of A and either to the right of A or coincides with 'A.

6
In either case, R is to the left of S. The argumentsiare easily re-

4

vised to prove ==-= .

The Greek mathematician Pythagoras reasoned that the length d of

the diagonal of a square ,with side of length 1 satsifies the equa-

tion d
2

= 2. He concluded that there is a 'fl number" d satisfying

this equation because d measures a length. On the basis of ours
f,

geometrACexibts thex4kis a realmber d measuring the distance

between the opposite ve4tices of the unit square.

ft

Ihrthe game way we find a real number, which we call r, which

measures the distance the beginning and ending points of
.

1

-tangency as a ci01e o4 unit diameter roll's through one revolution

on a line. But Pythagoras believed that all numbers are rational,

the ratios of integerls. When he finally proVed that there is no
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rational number whose square is 2 (in essentially the same way it

was proved in Theorem 4.2) he found himself in a dilemma. Later,

the number r was also foundilto be not rational:

It is precisely this same dilemma that faces us at this point.

We have assumed the existence of a set of elements called real num-
.

bers which satisfy the axioms of an-aedered field. But a proper sub-

system of the reals, the system of rational numbers, satisfies the same

axioms and apparently has the same properties as the reals. We have

established that the rationals do not include numbers such as x,

where x
2

= 2. On the other hand we can find a point on the number

line the square of whose distance from 0 is 2. °That is, there are

points on the number line to which no rational numbers can

assigned

Our objective, then, is to complete the description of the

syWem of real numbers in such a way that to each point on the num-
.

ber line therelaIll be assigned exactly one real number.
0

'Before stating the akiso which will complete the description,

we need the

Definition. A'non-empty.set°S of real numbers is bounded.

above if there-exists a real number M such

that's S M for every s in St The number M is
called an upper bound of S. 'A real number L

is a least upper bound (lub) of S if %"'

'(1) L is an uppen bound of S, and

(2) for every upper bound M of S, L S M._

For example, the finite ,set T = (1,3,5,8,17) has 18 as an upper

bOund. In fact, any number 17 ov greater serves as an upper bound

8
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of T4 Obviously, the lub of T is 17. The infinite set

U = (1/3;2/5-,3/7,4"...
r

, ...)
2n -11-. 1 "

to-

has 1/2 as an upper bound, since

L 2n +
n

2
1

<
1 for every n in N. (Prove this.)

° It can also be shown that no real number c'less than 1/2 is an upper -..

bound of U. HenCe, the lub of U is 1/2. In this case the lub of

the qtt is not an element ofthe set.

If we restrict our attention to the set F of rational numbers,

.th'e'questidri arises: Does' every bounded, non-empty set in F have'a

ideaa'V' upper bound in F? Consider, for example, the set S of all

poSiiie rational numbers s such that s2 < 2w This set is not empty

-(since 1 is in S) and it has an upper bound- 2 in F (gince s2 < 2

and 2 < 2
2

==.4's
2- < 22 ====> s < 2 ). It will turn out that this

boundtd set in F does not have a least upper bound in F.

Here we have the basic difference between ,the ratiorials and

the reals. is stated as our final axiom.

C (Completeness axiom) -?very non-empty set of real numbers

which has an upper .bound in R has a

least upper bound in R.

The least upper bound guaranteed_by this axiom is unique. Olio

show this, 'assume the non -empty set S of real numbers is bounded

above and has two least upper bounds L and Lt. Then,both L and Lt

are upper bounds of S. By definition, Lt S L, since L is a lub of

S. For the same reason; L S 1..t. Hence, L = Lt, and the lub of S

is unique.

;
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With axiom C (sometimes called the continuity' axiom) we shall

be able to prove that, for example, 1-2 is a real number. In other

words, there is a real number x such that x
2

2. Furthermore, we

can show more generally that the equation x
2
= a, a > 0, has a solu-

tion in R.

Exercises

1. Give two upper bounds and the lub of each of th following sets:

(a) (2' 1H ).

(b) (-3.6, -3.62, -3.615, -3.654). 4
.

2. Let T be the set of all real numbers t less than 1. Prove that .

1 is the lub of T. (Assume some real number c, c < 1, is an

upper bound of T. Then apply the inequality a < a + b
< b to

2

'c and 1, and show there is a real number th T which is'greater

than c.)

3. Write a corresponding definition of alower bound of a non-empty

, pet and greatest lower bound (g1b)'of the set.

t
4. Prove: Every non-empty set of real numbers,cmhich has a lower

'bound in R has a greatest lower bound in RI (Let s be any ele-

ment of a non-empty set S with loweia',b-66d,m;.thene

s 1111==*, .-s S -m. Hence, th3 ;Sgt of '>a12 opposites le of ele-

.

ments of S has upper bound /Apply axiom C to St to,obtain

the lub of St, say -Li' then show that L must be the glb of S.)

° 5.' Find upper and lower bounds of the sets:

g 3 7 n+1

(by (, .3' ill, `4 al, )
1 2 3

fl, 2, 3, 4, ..., ...
(-t

1

2, 5 10 17 n2 + 1

).

1 4 0

1
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(d) (2, 5 10 17 n
2 + 1

n

Find the lub of the t (a) and the glb of each.of.(b),'(c),

(d) in Problem 5. Try to prove these results.

2
For example the glb of We'set (17,

3 w4 , ...,
n +

1'
...)

.3

is 1. To proee this, we show that,1 is a lower bound of the
..,,,

set and that every number greater than 1 is not a lower bound.
. ,

\ ,

0

1 + e 4 3
4 3 2

For every natural number n, n + 1 > n (why?) and; hence,

n + 1
> 1.

That is, _1 Is a lower bound of the set. Consider any number

greater than 1, say I + e, where e is an arbitrarily sma31

positive real number. By means of the computation

n + f = - < e 4:===4. n >

we see that by choosing a natural.number n such that n >
1

, 1 .1 ,2 n + 1 , _ ___>n + 1n> < 1 + e;1tc, e

that is, there is an element of the set that is less than

a + e. Hence, 1 is the glb of.the set. It should be pointed

out that we assumed intuitively the existence of a natural

number greater than
1. We shall prove this in the next

- section.

7, Prove that if an element of a set is an upper bound of the

set, it must be the lub of the set.

14 -
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2. The Existence of IT ii R. We know that the equation

x2 = 2 has no solutibn in F. It ie ourpurpose in this section to

show how the completeness axiom guarantees that x
2
= 2 does have

4,

a solution in R. An outline orthe proof is as follows:

Consider the set Tof all positive real numbers t ,

such that t
2

< 2, and show that'T has a lub, say

x. Then exactly one of the following must be true:

x
2

<12, x2 > 2, x
2

= 2. .

If wecan shcl that the first two cannot be true, we nye

the vnclusion-, x
2

= 2.

In preparation for the proof we need three supporting theorems.

The first says that for any two positive real numbers there can be

found a natural number multiple of one number which is greater than

the Other. This result is then used 'to proVe the second and third.

The second states that for any positive real'number whose square is

less than 2 there is a greater real number whose square is also

_leSs than 2. The third asserts that for any positive real number

whose square is greatfir than 2 there 'is a lesser positiAe real num-

ber whose square is also greater than 22 A moment of reflection

will show that the second and third theorems, when roved, will rule

out the possibilities of ,e < 2 or x
2 >,2 if X is the lub of

the set of positive real numbers Whose squaies are less than 2.,

.

1 4 2
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Theorem 5.1 FOr every two positive real numbers a and b.

there is a natural number n such that na > b.,

Proof by contradiction: For a given pair of positive real
0

numbers a and b assume ther is no n in N such that na > b.

Then the set U of all products o the fOrm na has the propertyr.

that na < b for every' n in N. Hence, b upper bound, of

U. Now since U is nonAempty, we, know by axiom C that U has a.lub-
r

in R, say c, such tha1 every element of U is lees than or equaj

to c. n +..1 is in N if n is in N, the number (n +

is in U. Then

(n + 1)a. <

nq + a < c

(na < c - a,) for every n in' N.

. Thus, c - a is an upper bound of U. But c - a < c) since,

> 0. Here we have a contradiction, for we cannot have an upper

bound c -,a. less than the lub o. pence, the theorem is proved.

An ordered field which has the property of this theorem Is

called Archimedean. Both (R, +, ) and (F, +, ) are Archimedean.

We use this result to prove

Lemma 5.2 If a is arpositive real number such that

.

a < 2, then there exists.a real number b

such that b > a and b
2

< 2.

Proof: Given a in R,i a > 0, a
2

< 2, let us construct the

real number
a.

b a + n'

where n is in N,. and show that for some n'

A b > a and b
2

< 2.

I 4 3
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For any, n. in N, a + E. > a. (why?); hence, b > a for every n

in N.,'

Now we compute, for any 'n in N,
,

b2 71 (a + 2)2 = a2(1 + 1)2 < a2(1 +

(Here the reader should pause and verify for himgelf that

(1 + 17.11.)2 < 1 + for every n in N.)

On the other hand,

a2< 2 ' > 1
2

- 1 > O.

Since
26 - 1' is positive, so is its reciprocal, and by Theorem 5.1
a'

there is some n in N such that

n()s...) 1

.

6 - 1
a-

Then,

73i <

2

a
2

3
---+ 1 <

2

a2(1 + 14} < 2 for some n in N:

,Putting these inequalities together, for some n in N,

2
and a2(1 + < 2 < 2.b2 a2(1 ..131:r.

)

This concludes the ,proof.

1 (why?)

Lemma 5.3' If a is any posiViNT real number such that

a
2

> 2, then there exists a positive real

number, b such that, b < a and b2 > 2:

Proof: The proof idllows that of Lemma 5.2. Construct the
. ,

. .

reel number

a
= a - , ,

'1

14 1
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where n is in N, and `'show that for some n ;

, b > 0, b a, b
2

> 2.r . I

'The reader can"show that b > 0 and b < a for any n in N, n > 1.

Now compute

b2 = (a -i)2 = 0(1 - 1.11)? Z a2(1 -

Also,

qa2 > 2 < 1==> 1 - 2-6 > 0.
a"*.

Then by Theorem 5.1 there is an n 'in N such that

1%
n(--2 ) >

1

1 2

a

n
a

a2(1 721-) > 2 for some n in N.

Then by transitivity of ine'ititjaiities,*for some n in N

a2 (1 -11-) and a2(1 -121-)>, 2 b2 > 2,

sand the theorem is proved.

The stage is now set poor the ain theorem of the section.

Theorem. 5.4 (Existence* of 2 in R) There is a positive

. real number x such that :.x2 = 2.
.13rott: Consider the set T of, all positive r a1 numbers t such

that t2 < 2. Certainly 1 is in T, since 12 < 2 also

t2 -< 2 and 2 < 22 t2 <22 t

and we see that 2 is an upper bound of. T. Thus by i m C the set

T has a lub, say x. Now by 01 we are assured that exactly one of

the following sentences is true:

x2 < 2, x
2

>":2, x2 =12.

We shall rule out the first two as follows:

4 5,

L

YAN
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p, (1) Let x be the lub of'111In&assumethat x2 < 2. Then

Lemma 5.2 asserts that there id' a positive real'ffimiber b' such that

b b2 < 2. .

.

) .

Thus, b is in T (since b
2
,< 2),:' But this is ,a Contradiction, for

,i,
we cannot have any element,of a set greater than its lub. . Hence,

x2 < 2" is false.
.

.

.

. (2) 'Let< x' be the
:

lub of T-and assume that 'x2 > 2., Then

Lemma 5.3 exhibits ,a positive real number b such that

b <x and b,2,
> 2.

'Now for any element t of T, t4 < 2, sothat

t
2

< 2 and 2 <b2 t
2

< b
2 ===* t < b.

Thus,, b is an upper bound of T. This is a contradiction, for b

is less than the lub x. Hence, "x2 >2" is false, and we have re-

maining only.the sentence ax
2
= 2". This proves the theorem.

;

The reader may think that a great deal of effot has gone into
$

a simple result. On the con3rary, we have opened a Nast amain of-

new numbArs. It is now a_simple matter to rewol-d Lemillas 5.2, 5.3,

and T orem , 5.4 by,riplacing the number 2 by aay positive real num-

ber c. The result is

*Theorem 5.5, If c iqany.witive rear number; :then there is'
..,

a unique positive-real pumbei;Ahtuch.that x = c:

It is More edd.ou but possible, to go-e*en farther and prove4"

t o
2 J.

that if,c 1s any positive real number-and n21,414,any natgi!al number,

. 4
then there exists a: positive real number x s ch_that t

n
= d.

-
-,

le '. .;. ;'.

Derinition: If a. is a positive real nu belhe-ulliciue:

d the square
4a1 't.

--ositivessolution of 2 = a is c

root of a 'and denoted by y(T. 'the other
7,



solution of x
2

a is therefore - In2sener-
q

al, if, -a is'a positive-eal number, the ulliqup

positive solution of xn .4.- a, n in N, is called

the nth root of a and denoted by .ya-.

05

As a consequence of'the above definition we have '

.17= lel,.

.,Fo example, NA-3)2 = 1-31 = 3 and - 1)2 = 11,

where the absolute value notation gutrantees that the square root

is posi.tiVe f(or zero).

Real numbers that are riot-rational are called irrational.
. .

Thus, an example:of an irrational number. But not all

/' 0

irrational numbers are of the form Other real numbers such;

as :ff., which are noo solutions of polynomial equations,are irra-

tional. (See Append C.) Our task is not completed with the

proof of the existence of Va, a Z 0, in R.. We still need to show

that to every point on the number line there correspbnds a real

number.

Exercises

1.' Prove that there is.a positive real number x such that x2. = 3.

2. Show that there is a positive rational number b such'that

141 , 2c > and .c <2.

3. Show that there is a positive rational number d such that
,

14
d (-052 - and d

2
> 2.

4. Frpve-: If a is in F and b is irrational, then

(a) a -4- b is irrational,

(b): ab is irrational,
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(c) is irrational. -

Pi"ove: The equation x2'+ bx, + c with b and c in

R, has a solution in _Ft if and only if' b2 = 4C > 0; ,there
. 4

are one or two distinct solutions according as b2 - 4c = 0

Or b2 - 4c > 0.

6. Prove the corollary to Theorem 5.1:---4r any two ppsitive

real numbers' a and b there is a' natural number n such

that

n >
a nand < a.

7. Use the corollary in Problem 6 to prove the existence of a

natural number n such that n > -e-
1

for any given positive
.

e.

3. - Completeness of the Set Lg. Reals. In the previous

section we proved that certain numbers, such as vT, are in R

even though not in F. It remains to show that every point on the

number line can be assigned a real number coordinate in'only one

way. . %

-

Again, we need three preparatory theorems, each of which is

used -in the prqof Of the succeeding theorem.

A

Lemma 5.6 Given a non-empty set S of real numbers with

lub x in R, ifs a is any number in R such

that a < x, then there is a number b in.

S such that b > a.

oe-
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.Discussion: It is Instructive to view this theorem on the .number

line:

a

- Via S 1

It says that for any 'real number a less than th

lub x of S (no matter how close a is to 'x)

there is a number in S which is between a ,end .
Proof by contradiction: ,48sume there is no element of S

greater than a. Then every element of S is less than or equal to

and a is an upper btuhd of S. This is a contradiction, for

a < x and x is the lublk S. Hence, there is an element, say

o, of S greater than a.,

This lemma is used to 'prove

Lemma .7 For a given number a. ih R let S be the set of

all rational numbers xsi such that x < a. Then

a is the lub of S.

Proof'': Since x < a for all in S, a is an upper bound

of S. By axiom C we know that S has a lub, say y, such that

y < a: If we can sho,/ that yj a, then y = a and the theorem

is proved.

4J
I
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Assume that.' y...<

Also,

that

Then

This

< Y'

ti

5.161

that
N such that

n(1) '5 1

4111191:0

.":"

a - y > 0. Ttiqn:by Thegrem 5
tqW.-

Y

<a - y

y +n < a..

Now by Lemma 5.6 there is a z
.-Ztatu

iinn' S such

1Y--n<z<Y3r<z-P--<Y
. n

Y < z +

is a contradiction, because
number les8Nthan a) and cannot

Ilene "yl< al! is false, and we.

4.`kel
1

5'

.1.0.1e. I.,= < a ,, -*

n. .e..;::- L
-,,,, ,

;:,_
-13..t el-rii-; :Mr: -at.- is a

ii 46

be greater thant,kr,, t the lub of
have dyrg.tfecti.hibitoz-., a.

c

:Notice how the theorem rooks on the number line.

Hi)n

z

z +1
I I

Y ny(Iub) ,,i ;17-

1If. y is less than a, -then there is Srlirie:i21920-
1such that z + E. > y. °

.1 ,
.The final toreparatory theorem states that between ang*"

A't.t ;........
tinct real numbers there .1fes a rational_ number. Lin_ Other wo,._ t

a I, attc.pari--.,.
-

twt,

15,Q

'---M-
1-g--: ii."

. i,,, ? -

''."1";6i<40x,_,_ ?1.' -.. a- 1
-
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the rational numbers are dense in R.

Theorem 5N3 If' a- 'and b are any two distinct real numbers

lor such that a < b,, then there is a rational number

c such that a < c < b..

Proof: Let S be the set of all rational numbers 'x such that

x < 1:?. Then by the previous lemma, b the lub of S. Now by

Lemma 5.6

a < b = c > a for some c in S.

But if c is in S, then c < b. Hence,

a < c < b,

.,;'where c is a rational number,.

Now we can prove the main theorem.

Theorem 5.9 Corresponding 6b each point P of the number line

ea

there is exactly one real number x.
0

Proof: Let P bea point on the number line to which no ration-

al number has been assigned. We shall show that there is a unique

real number x corresponding to P.
a.

Let L be the et.of all rational numbers corresponding to
,st-,..:4 -ell"' t ,

oints to the left4f'10, and:let R be the set of all rational num-4 . "---7-r . :,y

bers correspondi to points to the right of P. Now each rational
.., - . ,

number is in° ei er L or R but not both.
. .

Let 4e. be' the lub of L and b the, glb of . '13. Then either .

f.

sa < b or a . b.

Assume that a < b. Then by Theorem 5.8 there rational number
..4.

I

c. such that a < c < b. Hence c, being. rational, is in L or R, but

not both. This is a contradiction, for c cannot be in L (being

greater than a) or in R (being less than b). Thus; a k P,-and we

ti 151

''"
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, -

=have, shown that a b. Since the lub,of a set is unique, there is

exactly one real number x ..a = b corresponding to P.,

this theorem we have finished the description of the

system of real numbers as a complete ordered field. The onse-
.

quences_are far-reaching in many fields of mathematics, s ch as
-

analytic geometry, calculus, numerical analysis, to name only a few.

But one of our priinary objectives is Stilt.not''attained; we

have no assurance that the equation x- = a, a in R, has a solution

in R. (Only if a 2 C does it have a solution in R.) 'tnen one

thinks of the great variety of
algebraicbquations5that''ma,,,, be err-

C..c.ntered, it is questioned whether we can ever develop a number

syStov adequate provide solutions for all algebraic equations.

Fortunately, only one more extension is necessary, an extension to
9

othe complex number system, to guarantee all such solutions;
?

A first course is usually not concerned with, complex nuMbers;

thus 'the extension to the complex number system and a discussion of

the propertieA of these numbers is deferred to Appendix B.

How may real numbers be represented? One pf the .consequences

of the theorems If this sectio is the fa.ct (See problem 4) that .a

given irrational4numbermay be approximated as closely as desired `

.... A

by a rational' number. .A.discussi6n of representation is given in

'Appendix A. t .

How much of the theory of this chapter should be includelinr

A f,'irdt course? ,Vety little. The purpose of the chapter was to

provide a clear understanding in thg.teacher's mind of the"napre

and char cter of the real number system. Only then can he transmit

a corxect intuitive picture of-real numbers to his students.

O
52
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'EXercises

1. Prove the counterpart of Lemma 5.6: Given a non-empty set T

of real numbers with glb y "In R. If b is any real. number

such that b > ya then there is a number c in

that c < b.

such

2. Prove the counterpart of Lemma 5.7: For a given b in R let

T be the vet of all rational numbers y such that y > b.

Thee b is the glb of T.

3. Prove the statement made in Section 1: The set S of all

=rational numbers s such that s
2
< 2 doesnot have a lub

in F. (Between they real numbers ',a and a there

is a rational number , y Th' evem

Prove,: If E is any given arbitrarily small positiv'e real
. .

.
(

number and a is any given real number, then there fs a,'
.

,

rational riUMber, x. such that Ix - at < 6' . (That.isi any

real number can beipproximated as closely as desired by a

rational lumber. Since, a - E < -a + E then between a-- E
°

and a + 6 thre is a rational number, by Theorem 5.8.) .

g

5. Let I
n

be theset of numbe'rs x satisfying

`r < ?( <bn, an < bn-
.

;f an < an+i, bn+a < bn, and if a = 1

10
n

, then the

p

set ,(ri,..I2, ...,..311, t-..).._is_plled a nest Ofinterva1s, .

Prove that under these conditions there is exactly one real
,

.

number which is fn e(Very I
n

. '(-Show that the set-

[al, e2, .., a_, "..:) is bounded above; hence, has.a unique
n

. - e
lub a. Tiien'shd1What a is in every I- Flhally, show ,

i< Al. - .

0 that if c, is in'every..I
n and c/ a, there is a contradiction.)

, . . .
. .

7-
"1

.



Chapter 6

-FUNCTIONS

1. Variables. In our discussion of the real number system we

wrote statements such as:

(1) For any, a and b in R, a +.b = b + a.

In other contexts in algebra we see statements such as the formal

equation,
x2 - 4

(2)
, x + 2 2.

In these sentences there occur symbols an num-

bers from some set of numbers. We usually refer't6 such symbols as

variables, using the word loosely. But it is not clear that vari-

ables play the same role or hav'e the same meaning in each of the

sentences (1) and (2). ,In (1) a and b represent any, elements

in R; ii\ this context a variable is a quantified p7mbol represent-
...,

, an element of a given set. The quantifier in' (1) is ; "any ".

In the .sentence,. "The ifitegeps a is even if theriqis-sometlint40b
, ,

such that a = 2b," the quant$'ier is "someeanIt*-"atAgot,'I

one."
'1011'

On thediherPand'there aieno'quantifie4 .n (2). 'nei,e the
, ^

. .

symbol x has not been restricted in anyway.. In this context a
. .

variable is an indeterMinate, an unquantifiea symbol 'which has no

meaping until it is. agreed ,what properties it yijoys. indeteinii-
,

nates were used in this way for a long time before anyone succeeded
6.1 .

_ .

. , .

I
A
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An clarifying, their significance.
. 1

Are'these two meanings of "variable' compatible? How may these
\

.

meanings bItqe used interchangeably in algebra without And

most important, how may all the concepts of variables, operdtiNs,

relations and correspondences be unituied in algebra? These ques-

tions will be considered in the following sections_.`
. A

2: Algebraic Expressions, We devoted much of;our considera.
4

tion in this study to the algebra of the real number lystem, in
t

which "variable" is used in the sense of a "quantified symbol"

representing an element"of R or of one or the subsets of R, Now

let us develop, if possible, an algebra of indeterminates. Then we

shall show how these two meanings of "variable" complement and abet

each other in much of the first course in algebra.
. -

First, we fix our atteritir on a set S of numbers, and the set'

of four binary connectives +, The set S can be any subset

' of R, or possibly the set of complex numbers (see Appendix B). The

connectives, when applied to pairl,of numbers in S, are the usual

field operations. Now let us attach to the set S any indeterminate

symbols, say x, y, z, a, b, c, From thp enlarged set we

c build algebraic expressions over the set.S by the following

Definitj.On o
,,

-

(1) Each of the symbols and numbers\is an algebraic

expression) A
,

(2) ,Givenany ro algebraic expresiiOnsA and B and a

conn tive * from the .set of connectives; then A*Bis

an *algebraic expression.

4' (3) V. A is an alg ebraic expression, then 1Y7: is an alge-
. ,

loraic expression, where n is in N. ,

155



6.3

(1+) Any finite number of operations (1), (2) or (3) results

,in An algebraic expression.
4

Thus, algebraic expressions over 3 are those which'can" be construct,

-:ed from indeterMinates and7.6Tae'rs in S by the above rules of'for7

mation, somewhat in the same way that English expressions are

forded from, words by certain rules of grammar: For example,

2x + 3

.4

*
is an algebraic expression* over I. (The reader can verify this .

by tracing the sequence of operations which generates'the expres-t

sion from the symbol)x, y and numbers from I.)

+ 3

is not an algebraic expression because it does not conform to pre-

scribed mathematical "grammar"; whereas

sib x mirk

---is not an algebraic expression because it requires an infinite'

On the other hand,

seqUence of pei-missible opefgTions for its representation:
3

x5 x7x
sin x = X - -3-1 + - 4

Now.eonsider the_system of all algebraic expressions over the

sdt R of all real numbers and the binary operations of additioh
.

and multiplication. By definition, corresponding to each element

A of this system there is an element (-1)A and-an element ,l

in the system. Let us agree to abbreviate "(r4A" to"-A" and

"1, A" to "2A1" . 4

*We agree that "A i BP may be written 1".

1 5 6

44.4 '4

C.
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With "A.--=,B" meaning "A is the same algebraic expression as B", let

us define subtraction and division by

A - B = A +(-B) and A i B = A(i).

Here we are again in a familiar position. We "have a system of

t -

elements and two binary operations such that for any two elements.

A and B of the system, A + B and. AB are unique elements of the

system. But certain elements of this system (the real numbers)

already have their.properties prescribed under the operations, so

that de are not free to assume properties of algebraic expressions

arbitrarily. Instead we shall extend the definition of equality of

algebraic expressions in such a way that the field axioms F1 to F7

hold. That is, if A, B, C are any algebraic expressions, we define

A + B and B + Prto be equal, AB and BA to be equal, (A + B) C and

A + (B C) to be equal, etc. It can be shown that this definition

of '1." for algebraic expressionslhas the desired equivalence

properties:

A.= A; A = B4= B . A; A = B and B = C =-1>A = C.

The result is a system of algqraic expressions, over R with the

structure of a field.

After this statement has been verified we have alist of

thms ready made,;oncerning operations, oriaaget)Taic expressions.
4

They are Use theorems deived.from the field axioms, with "real

number"&placed by "algebraic expression." Sudh theorems are the
, A

basis for all formal manipulations dr algebraic expressions. From

them We obtain such re sults:s:

x2 -.Ax a4=., b'4X- a + b)(x - a - b)

5 7



6.5

o

4i- x2
x- 2 (x + :2)-47\

1
r

'x + a'

x y 3 -4x +
x2 x + 2y x2 ity2 '

etc.

ayY

This is the bread and blItter of elementary:algebra; .it invojyes

the skills that'every'beginning student should' acquire. There is a

basis for these manipulations -- they constitute the art of "symbol

pushing" with a purpose and for a reason -- which should take them

out of the realm of mechanical busy work for a student. That is,

"symbol pushing" is really concerned with the structurecf the field

of algebraic expressions..

Just as the system of real numbers has interesting subsystems,

so has the system of algebraic expressions over a set. 8.

Definition: The sub-system of algebraic expressions over S

obtained by applying only operations (1), (2),

.(4) of the definition is called the systeM..of

rational expressions over S,
*

For example,

AP3x
3
a - xg and 5 x'y - alb +'r

x

axe rational' expressions over reas

3ab
vIF7=-T

is an algebraic expressigoln over I which is not rational because it

Involves operation (3) of extracting aroot.

*Notice_ that,ff is an element of/R and is not thought of as requir-
ing operation (3) of the definition.

)

1 5 8



o

,Definition:` The sub-system ot rational etxpresAons over S

obtained by using only the subset of Connee.tives

+, x is ca &led the system of polynomials over

S. A monomial is a polynomial obtained by using

only the connective x.

For example,.

3x2a - 4yb is a'poiSinomial Aver I,

4 3a
2

x bc
+ is a polynomial over F, and

vTx2 -,5 is a polynomial over R.

Of special interest are polynomials j.n one indeterminate over

R. These are of the form

.° ao + alx +,2x
2
+ + anx ,

1' where a0, al, ..., an represent elements in R, dn/ 0, and n is a °

positive integer. A good deal of attention is given to such

polynomials in a first course. A student learns to add and multiply, .

polynomials, making use of associative; commutative and distributive

properties. When.he learns to factor polynomials' (that is, into

products 'of polynomials) he/finds that he must be careful to specify

the set over which the factorization takes place. For example, the' --

_polynomial over F,
2 1

x -

' is not factorable into polynomials over I, but is factorable over F;

whereas the polynomial over I,

x
2-2,

*The rational numbers
5
-'-land di are multiplied by 'other expressions

ancL no 'division is involved. .

159
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is factorable into polynomials over R but not over F or I. To

illustrate the necessity of specifying the set Over which factor-4
1

ig.,ation takes place,-,let us find the factors of the polynomial

4 1
x - 7

(a) It is not factorable over I.

(b) Its factOrs over F,are (x2 = ;.)(x2 +

(c) Its factors over R are (x -4(x +4)4x2 +

(d) Its factors over the set of complex numbers are

( x + (x - i ) ( x + i 4)
As e student works,with polynomials he notices their similarity

to integers. Like the integers, the set-Of polynomials, is close'd
. ,

under addition, subtraction and multiplication, but not under

division. And also like integers, they'have the property of unique

prime factorization over a given set. This suggests why sdRie

writers call polynomials integral expressions.

/

A t'

If A and,B are polynomials over S, then their quotient E. is
.

,
/

, certaiAy a rational expression' over S., .Conversely, it can also be

shown that every rational expression over S can be represented as

the quotient of two polynomials over S. The'analogy with rational

'114114

,

. '

numbers suggests the adjective "rational ")for such expression.

4*
Exercises

- 1. Identify each of the following expressions over S as polynomial,

rational, algebraic, and specify, the set-S:

4

. 160'
t.
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(a) , - y 2

e

(P)

13 - xl
4x -

(c,)

6.8

(d), 3:3c-

(e)

s

(f) xxY a y4.7,

L2. Represent each of the rational expressions in Problem 1 as

' the quotient of two polynomials.

3. If °A is an algebraic expressi6h, explain why A - A = 0 , '

°1041.
Aand w = 1.

4. Use the field properties of algebraic expressions to prove:

4

-

-

2
x2

(a) = -(x + 2)
x

`(b) '
y .' 3 . -4x + 7y

4y - x x + 2y .

.

x
2 - 4y

2

x3 + 2 2 1
(c) 1 +

x + 1 x x + T-T--1

5. FactOr each of the following-pplynomials, if possible', over)

I, over F, over R:
, /

.

',"

"7

(a) x5 - 7x4 + 12x3 - (c) y"
0

- 2 + a"
0

- 2ay

'''' ...;..,...)

:.(f x3 '°- -V 4 x (d) al/ + 4

3. Open Se tences. Why do we bodier to construct the system

of algebraic expr ions elver R? .What good are they? Re're we

observe the reason for demanding that algebraic expressions,satsfy_

the field axioms. For if we substitute real numbers for the in-

° determinates of an algebraic expression then the expres'sion represent

a real number ,(barring divisiorPby zero and roots of negatives) .

1,61,
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Hence, with certain restrictions, we may, shift back and forth be-

tween the indeterminate meaning of "variable'and the quantified

,meaning with certainty that no confusion will, result -- under both

meanings the structure of the resulting system is that of a field.
0

, The power of our algebraic manipulatiOns comes from the fact that
V

We may indiscriminately put on and take off quantification of the

'variables, in the one case talking about real numbers and in the

other about indeterminates, respedtively. Thus, what might appear

to be laxity in an ti is'redaly our assurance that operation-

ally the next line of the argument will be justified whether.

- .variables are quantified or not.. This\is the justification of
1

"symbol pushing"; the power of symbol pushing comes from this

freedom from speCification.

The compatability of the meanings of "variable" leads to a

successful marriage of their uses in algebra. Consider girsi the

problem of solutions of sentences,
/

If,an algebraic expression has its variables quantified with

respect to the elements of a particu/* lar set T of real numbers, we
.

-say:that the'expressipn is anopep/pirase whose variables have

domain T. As a special case we consider any element.of T to be an
_

open phrase. From open phras s we construct, open sentences'.

Definition: If A adBare open phrase's, then

."A / B11, "A < B" are open

sentences. If p, q are open Sentences,

t -n "p and q", "p or' q", p,
,

hen q" are open sentences, ,\N
a N.

1,62
0
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_Since openlphrases'are symbols for numbers in a given set, an open

sentence is a statement concerning equalitylor order of numbers in

this set. For example,
,f,.* s,

(1) (x2 2(2x + 1) = ( 44.- .x In F, and

(2).\ 2y < 5 x, x and y

are open sentences, the first in one variable and tbe second in two.

Notice particularly the quantifications of the variables; ,(1).is a

statement0"about equality of rational numbers; and (2) concerns the

order of natural numbes.

For given values of 'the'variables an open sentence.becothes:a

statement about numbers which is either true or faaerbut not both,,

If x then (1) is a false statement; if ,x'=-4-7 then -_

a true statem nt. If x = 2 and y 1, . then ,(2) is a true
. I

4, P

, Statement;Ayhe b' if -x-= 1 and .31--- it 'is a false statement.
4v re . -,.

.,,, numbe F which' x may represent to malq11) a true state<

ment'is called a solutiqn of (1);' the set of all solutions of (11
t

. t,

, is called the truth set .(or solution set) Of (1): (K discussion of°
, -

truth sets of sentences-in one variable was given in Chapter 2.)
. .

Thus, the truth set of -(1) is (.4). NotiCelhat if,Gx had instead'
.-,

the domainR, then the truth set of (1) would be [....;, ..,eT, .....A):
..,

Before We can define the truth set of a sentence in two vari-, '''

4 - :-
ables we must agree upon an order of the variables and we mist

-,
construct a set of ordered pairs of numbers. In sentence (2), for,,

example, x i8 given as the firstevariabie and y the second.
*-

--Furthermore, since x and y have domain N, we must construct the
CO' /

.set all.possible ordered pairs of numbers in

1 / C(1,1), (1,2n (1,3), (2,1), (2,2), (2,3),,...,:(3,1),.(3,2)/

(3,3), ....). We call this set the 'Cartesian prOduct N Vow

If6 3
a

'

>
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9 ga if /

---6n-..
t . .. A,

,.

_ ,
_ _ _

. .

----,
ri...r.: __

an element in N x(N (an ordered pair c)., umaitnumbersl_is,a
.---..,

_- ,,.. - -
_ . .- .....

, .. , 7......;---- ,q4.:57k,42.,: --
solesution,of (2) if when x represents the firsffiiab

L..
f the =1-

ordered pair and, y the second, the resulting-stat is_ trueT4g$7-

The set of all solutions of (2) is its truth set t ,,the trupft.,-,,
. - ---,g

, < - 3e*-,--
set= of (2) is the set-of two eleme is it 1,

__

_
,

-

.0., -

Definition: Given a sentence in we-ordered_va bies x
' .

,

r0.3

- .;---,,,,_,' :

4
set- S x T 6fall ordered pairs, lhgfirst

tf1.7-121-11x02"-
element of each pair being an,...e.-leiTr_S

an element of elementthe second

of S x T is a solution of the serpaR104,_-ale
when x represents the first elem

the second, the Sentence-ia-s, tement.

_

The set of all solutions is the trOtba4Wof--1=

the sentence.
tt3

In Chapter 2 we found that graphs of sets a u eful in find-
..

-11 ing.and expressing truth sets of seatenees in one variable,.'-Wetoln

extend these techniques to obtain graphs 61'6-'4 =mod paid

of numbers, where the first variable has_avalue c$ri:esPondingtri'

point on a horizontal number line and the second able to a point
' -

on a vertical number line, forming the-wel1.1.zwyn4a tepian co- -

Ordinate system on the plane. T4en each ordered pail ,c4' numbers C-
. .=

corresponds to a unique point of the plane. Forx.gdpke, the° et
.;

cy

((1,1), (1,2)-, (2,1)., (3,1)) has the graph: 4 b

lk
la>

. 164-
41,

43 _
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2

. 2

If the variables have domain R we can also say that each point of

the plane corresponds to a unique ordered pair of real numbers.
4

This one-to-one correspondence between the set R x R and the set

of all points of the. coordinate plane is guaranteed by the completeh
4

nets of R, and this fact is the basis for analyt c geometry of two

dimensions.

) It is an easy transition from two to three ordered variables
,

and from two to three dimensions. The reader ,is invited o describe

--
the set RxRxI3 of all ordered triples of real numb rs and to

define the truth set of a sentenc4"inihree ordered rialV.es,

giying an'appropriate description,bf the graph of such a trutOet.

Before beginning a,formal diScusslon of solutions of ,Sehtehees

we should point out the,role of quantificatitn of the ariables.
,

,Consider the sentence,6

2y < 5 - x and 2y < 2x + 5 an% y > 0,'

where x and y...are quantified as follpis:

(a) x in N and y in I,

(b) x' in -I and Y in

( c ) x in I and y R,

.(d) X R and zy in I,

.(e), x. in R ,.rd y in R.

t'
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In each case tb.p truth set of the sentence depends on the quantifi-,

,cation. The graphs of the sentences are:

(a) (b)
.

2

,

i°,6
1 2,

(a)

1 2

,4,,r
"

I 2' 1 2

(e)

An example of the'interplay of the algebras of real.numbets and

41gebraic expressions is found in solving sentences in one variable.

By Solving a'sentence we Mean the process of determining its truth
, ,

set. By Amittion of a sentence we mean an element of its truth

set. It requires little insight, for Cs. student to see that 2 is a

solution'of 'x + 2 = 2x, x in R. That 2 is the only solution can

be shown bye simple argument: forl'any x greater than 2,

x + 2 <-2x; for any x less than 2, x + 2 > 2x. Hence, the

'truth .set is (2). But such arguments become more difficult as the
,1

sentences become more complex. Having found solutions by trial and

error, how can one be gt1-'re he has found all ithes solutions?
_ .

Consider, for example, the sentence

(3) --3x2 + 4x +,75c 5 3x x2 + 5X-+ 4x2 7, x 'in R.

Nei

,

166

.



fIf we regard "each member of

_ -

we may, write formally

6;14,

e equation as an algebraic expression,

3); = 4x2 + x 5,

+ 5X + 4x2 - 7 = 3x2 'A- 5x - 7.

-Then (3)' is tree -if and only if

-32 + 4x + 7x

-4

(4) 4x2 + x 5= x2 + - 7, x in R,

is true. We are assured.of

properties in simplifying t

propertiesDhold for all rea

the'same as that of (3).,

f they have the same trut

variables and remark that
A

both members of (4),'the r

(5) x2 - 4x

it equivalent to (4).

fled variables to faCt.Pr

2
..

giving t equivalent sen

(6) -(x - 2 -

pext we use the theorem

ables) : " and . b in

// ,to write the,equivalent

4

(7) -x 2 - %fa = 0

It is an easy step to t

his because we used cer ain field

e algebraic expressip s and these same ,

numbers. Thus t truth set of (4) is

say that two/sentences are, equivalent

set. Now we shift back to quantified

y adding/( -3x2 - 5x + 7), x in R, to

sulting>sentence

+2 =0; x* in R,

is Atlis true?) Then back to unquanti-

'left member:

2 = x2 - 4X,"+ 4

= (x - 2)? 7 2

4

ence'

- 2 + -./r2) X in R.

oncerning real nimbers (quantified vari-

, ab =0c== a=0 or b= 0",

entence
"Ahr

)

Or x - 2- + 0, x R.

-

final equival'ant' sentence'
or,

(8) x = 2 + ../.2 or x = 2 -- x in R,

whose truth set is of course (2 + '2 - ./2).

6 7
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This solution took us through sik sentences, each equivalent

'to the othra, until we arrived at one whose truth set is obvious.

. In some steps we dropped thetpaqtification and performed formal

operations on algebraic expressions. At others we picked up the

quantification and applied theorems concerning real numbers. Always

we were assured of an equivalent sentence because the field proper-
..

ties we. used hpld true for all real numbers as well as all algebraic.

expressions.

The preceding solution is not intended as a model to be follow-

ed. ,.It is a typical example in which we spell out the shifting

between the two meanings of "variable": It should be noted that

Ile factorization over R leading to (6) ins accomplished by the

familiar "completion of the square".

Not all operations on algebraic expressions lead to equivalent

sentences. Notice that the sentence

(9)
- 4 4, xin R,

hag a nullitruth set '.(no value of x in R makes this sentence

true). But if we drop the quantifier and writ>w

x2 - 4 x + 2
x -1 2

,

the resulting sentence

(10) x,+ 2 . 4, x in R;

has truth set (2). In this case, (9) and (10rare not equivalent

sentences because the formal operation, when antiried, becomes

2x - 4
x - 2

x °+ 2 and x / 21
-;
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that isrwe must prohibit division by 0. Now the sentence

(11). x + 2 = 4 and x / 2, x in R,

is equivalent to (9); it also has a null truth set.
V .

.',Thus, formal operations on algebraic expressions lead to

equivalent sentences if the results of the operations 'are then

properly 4uantified. We assume that when theore!is on real numbers

are used to obtain new sentences, the quantifiers will be carefully

retained.

Of course, some theorems ledd to new sentences whose truth

sets include those of the original sentence as proper subsets.'

This sometimesshappens when we use the theorem: 'ua and lo in R,

and a = b ==-4> a
2

= b2". Note that the converse of this theorem_

is not true: For'example, tie sentence

-(12) = x, .x in R,

ha's its truth set included in tie truth set of

(13) 2 - x = x
2

x in R.

The truth set of (13) is (-2,1), but -2 is nota 'solution of

(12): )then we apply a theorem that does not guarantee an equivalent

sentence, that is, whose converse is not true; we must check individ:

-ually each member of the resulting truth set in the original sentence:

On the other hand, some theorems maytresult in new sentences with

smaller truth sets thah the original sentence (such, as "a and b,

ionin R, a = =. , where c involves a variable). It is
c

°best to avoid this situation if, for some x, c =

Of primary importance to a student is his understanding of the

rale of equivalent sentences in solving a S-entencand the.,typbs of

opAratfons and theorems resulting in,equivalent sentences. Equiva-

atwo-way affair.. It means t every solution of the

I)
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.

'first sentence is a solution of the second, and every solution of

the second Is a solutionz:9f the first. if he sees how operations
SA _

,'

orf algebraic expressions aid him in this procedure, he will not be

tempted:totr4t such operations lightly.

Exercises

1. Solve each of the following sentences:

(a) (x + 3) (2x - 1) (x2 - 3) = 0, x ,,,,in I.

(b) (x + 3)(2x - 1)(X2 - 3) = 0, x in F.

(c) (x + 3) (2x - 1)(X2.- 3) = 0,. x in R.

(d). 3x A x, x1 in N.

3y.< 6 - xx x ,in N, y in N.
-Coe'

(f)) 3y < 6 - x and y,< x, (x,y) in N X N.

(g) = 4 4-IT, x in :R.

(11) x2 - 1), x in F.

IX

- 1
x - R.,or xe> 2, x in R(1)

2. Draw' the graph of:

( a) x
2'
- 2xy = 0, (x,y) in R x R.

(b) 3x - 2 =0 and y = 4x - 1, (x4y) in F x F.

:4(c) 3y < 4x + 6. and y < 2 and- 2y > x,y) in I x R,

(d) -.3y.< 4x + 6 and y < 2 and 2y > x, x,y)" in R,x R.

(e) Ixl + IYI < 4, (x,y) in I x I.

(f) x2 + y2 < It and' x > y, (x,y) in R x 'R.

1 7 0
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3. Solve (by, constructing a sequence of equivalent sentences):

(a) 3x3s 5x2 - x3 = 3x + 2x3 + 2 + 2x, in-R.

(b) . (x + 1) (x2 '1) = 3(x2 - 1), x in R.

(c) ]+: x in R.

(d) (x 1)(x2
1) = 0, x in R./

X- 2 4 3
, x in R.

x2- 4 2(x ± 2)

4. Functions. Running through all our discussions of. opere-

tions, correspondences, algebraic expressions, and'open sentences
,

there is a common idea which was hinted at many times but never

stated explicitly. This is the concept of a function. There are

sharp differences of opinion on the question of introducing func-

tions
.

(at the beginning of a first course verSusianding a first

course with functions. Sortie writers believe that all terminology

of operations, correspondences, etc., should be abandoned and these

i as unified from the very beginning in terms of functions, The

writers of SMSG-F, on the other hand, decided to lay the groundwork
\

for functions and then culminate and, summarize the course by showing

how functions can unify the preceding ides. The question has by
.

no means been Fettled, and the reader is invited, after 146ading

this chapter, to enter the argument, eitheF prb or con.

rj
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If we review the major ideas of algebra, we recall such state-
,

ments as .

(1) Operations:, For each pair of numbers a and b in R there

is a unique number a+b in R.

This operativ assigns to each pair of elements in R exactly

one element in R..

Each element a in N has a Unique 'reciprocal

a
in ,R.

This operation assigns to each element of 1' exactly one

element
1

in R.
a

6

(2) Corre0orwlences: There is a one -to -one, correspondence between

.4411t the set of even natural numbers and N.

This correspondence assigns to each element n in N exactly one

element 2n in N d aspros to each element e in E (even natu-
,

°_ral-numbers) exactly one element n in N.

'.(3) Algebraic expressions: 3x2 + x - _272, (x,y) in RxR. This
, .

,...
.

quantified algebraic expression assigns to each element (x,y)
y

in RxR exactly one element (3x
2
+ x - 2y

2
) in R.

(4) Variables: Let x be the number- of feet in the length of a

rectangle.-
4 4

TbeArariable x assigns to each rectangle in the set of all

rectangles exactly one'number (of feet_in its length) in R.

(5). Open sentences: y x in N and y in R.
k"7.1"-*".

This sentence assigns to each element x in N exactly One ele-

ment yin R (for which,the sentence is true).

T 72
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(6) Sets of ordered (( 0,2),(1,2),(3,r),(4,1P.),(5,r)), This

set of ordered pairs assigns to each element in (0,1,2,3,4,5)

exactly one element in R.
cc

(7) Gralis of sentences: t
-

This graph assigns to each
(x,y)'

element x (atbsctssa) in R

exactly one element y

(ordinate) in

It is evident that a common concept runs through the above

examples. In each of (1) to (7) some rule or operation or associa-

tion or correspondence assigns to. each element .in a given set a,
4 -4

unique element in R, resulting in a pairing off of elements-from the

two sets in such a way that. "iib two distinct elements bf the second
"r

set are assigned to the same element of the -first set. To be sure,

there are correspondences 4hich pair off elements of non-numerical oft.

sets, such as the correspondence of each hftan being with a color
i

(of his. hair). In fact, wherever P.qfn orapossessive form bf'a
.--,--

erfl is used there is ra-orrespondence 1?etWeen elements of two sets.
: e

4

ut in this study shall restrict our attention to the types of

corresponddnces given by,the

Definition: Giyen a Set of numbers and a rule whiCh,assigns to

each numbed in this set exactly one number iNoR,*

the resulting association of numbers'is called a

function. The given set is called the domain of

'definition of the function, and the set of assign-

ed numbers in R is' called the -mange of the

function.

! 7 3
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A function is usually designated by a letter, such as f; if f

assigns to each element in S exactly one element in R, we indicate

this fact in various waysv

f: f(x) =.y, (K,f(x)); x in S, y in R.

The third of these notations is most commonly used in a first course.

It is read "f x is equal to y"; thatj.s, the number assign-

ed by the f-function to x is y. ffotice that f(x) is not "f

times x", but rather f(x) is a number. The fourth notation

indicates that each x is paired off with the unique number f(x)

assigned tc, x by the f-function.

A common misconception among. students is that functiOns

be defined, in fact do not.4.4t, unless there is a formula (alge=

braic expression) involved in the definition. We must convince him

that a function i8 a concept,an idea, and not a formula. There
-

are manmays of,re,presenting a function. For example, the function

described above in example (5) can be represented-Ivariously

A set of order pairs: -((1,1),(2,..),(3,1-),(

A Verbal statement: To each x in N assign th number in R.

*s An equation: y,=,/5-C, x In N, y in R.
.

t.
A formula: , f: x x in N.

,

A graph:

2

I.;

I

v I

I

2
I

No one of.these representions isthe function, but each describes

the function. The point is -that a function does not depend for its
*i.

:elefinition on its representation but only-on its domain of defini=

tion and its rule of assignment. In general, two functions are

, ) 7
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equal if their domains ,are the same set and their rules of assign-

ment are the same, regardless of the manners in which they are

.represented. For example, consider the two functions:

f: a 2a + 1, a in L `

g: 2x +°1', x in R

These are diffe ;ent functions because they have different domains,

even though their rules of assignment are the same.

Frequently the rule of assignment is 'given for a fUnction
,4

without mention of a specific d of definition. In such a case

'the domain is understood to the,largeat
,

set" of real numbers to

which the rule An be anpV.,ed sensibly:* AT eNmple,:ii a functibn
,

_ ,

is defined rf: xt1).;,/..X'+ 2, then Alen otherwise steed, the

domain is undeistooetil*-the sq.:iOf all real numbers greater thin
t7 ,

oredual to -2.

Not all correspondences between sets of numbers define rune
,

tions. This is another point of confusion for students :t For

example, the equakon

2.y x17, x and y in R,

does not define a function ff y because to each element x in

A this equation assigns two elements y and -y in R. Of course, we

may write

y2 x . 4 = 0 . y = X or y = - x

and regard the'equation as defining two functions. This is precise..

ly hovvwe would handle this equation in certain situations in the

calculus. On the other hand, the equation y
2
= x, x and y in R,

does define a function .g, where ey) = y
2

.
,

,

175
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, Som& functions may not be represented by formulas, but this

does notdisqualify them as functions. For `example, the first

class postage regulations define a function: .to each req.number
L. 4

x (in ounces) in the set (0 < x S 320) there is assigned a natural

number y(in cents) $cording to the graph

y

We could also describe this function verbally qr represente

table of pair,,,,,ot numbers, but we cannot find a single algebraic

exprgession which represents y for a given x. reVertheless, there/

is a function defined.

From our new point of view we can say that an algebraic
t

expression, when its variables are quantified, defines a function.
;*,-

The graph of a function f is the graph of the truth tset of.the

sentence y = f(x), with^x in the domain of f. Thus, if a is in

the domain kf f, then (a,f(J)) is a point on the graph of P. From
0

thetdefinition of a functiOh we see that there cannot be two pointst
on the/grap),of f with ..the_same_ahacissa and distinct ordinate's.

This jfs the same as say that if a vertical line is drawn through,

the graph of f it will i,fftersect the'graph in exactly one point.
t

`This, the graph fig 4(A) describes a function, whereas the

aph in figure (B) s not.

-44
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C

For a student the graphical representation of a function is

probably more informative than any other. IFor instance, figure (A)

gives the graph of the absolute value funttion defined by the equa-
.

tion
g(x) = Ix'.

From the graph it is. easy to see that another representation is

gi6n by

f(x)L-

'x, if x 0,

-x, if x < 0,

which is a statement qg the definition of Ixl.

The study of linear_and.quadratic functions is aited by graphs,
V

and the subtleties of domains of definition are often cleared up by

graphical'representation.

A final word to teachers. When students are introduced to

junctionS,
\

the introduction must be clear and ,precise. It would be
. \ .#

bgtter to omitPall mention of functions rather than-pr iNape______

meaning of them. But if a st1iidentre4ly uriderstanas what a func-
,

tion is he ca e unity andP.:r/here-hoe of,---thp variety

of topic- he studied in algebra. r-

.2. Each pf the following is a representation of a function; give

three Other representatior -61,2,2-4,alas_lIs_doinain and range.

4 ------
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.

.
,..,,

,

c...,,,

(a) To etch positive integer 41-there is lig:signed its ''''r ma rider
,..-...._

after dividing n by 5. --
c..;

..,

(b) ( ( 1 , 5 ) , 1 2 , 8 ) , ( 3 , 1 1 ) , ( 4 1 1 : ) , ( 5 , 1 7 ) , . : ' '.x )

(c) f(x) . (x.4 2(, x in

(trn Y
2

FP

3
,

2. Determine the'domain of each of the fupctions defined a

follows: At

(a) f (x) N-z. (c)

( b ) g(x) =,1x2

.; \
3. How are the functions in each or the fa a4owing pairs re ted?

(a) f(x)-=
)

t2 - 4 40

2

,
(b) goo = x? 1,-

.
-LG(t) 1/4'

='\((x
1)2' H(t)-= -It - 11

---44--Lcmgder the fund ZS f defined by the rule -

f(x) =
-1," if -1 S x < 0

x, if 0 < x 2

t .) , ic3)(a) _What:numbers. are, represented by f ( 1) VS
, ,

(b) ghat is the domain of f?

(c) What- is the range of f?
_ f

i8 the truth set_ of the equation f (x) = x?

(e) Draw the graph of the truth _set of the sentence t(x) < 1.

Given the function g defined by 1.

,g(x) = x2 1, x in R.
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If t'is in R; what numbers are represented by g(-p), -g(t),

2 g(t), g(2t),

O

6. Draw the graph

1
g(t-1), g(t) - 1, g(t)),t,i4(g(T)),g(gt.t))?,

of. a function f which satisfies the conditions

f(-1)..!= -2, NO) = f(1) = 0, f(2) = 2, f(x), < 0 for -1 < x < 0,

and f.(x) >.0 for ro< x < 1 and for 1 < x.< 21. s there only

one uncZ2Y. satisfyinA these conditions?

< 9 .

7. _Which of the f011owing graphs define functions2

(a) 4' (b)

4

I

(d) (e)

(c)

'8. If a function' f 1.s defined by the following graph

f(x)

2
- i

itr ItIf _ X
-2 . ,

draw the graphs of the followi g functio s:

(a) g, where g(x)=/-f(xi, -2 < .35 <

(b.) where h(x) = < x < 2

(c) k, where k(x) = f(x) + 2, -2 < < 3

(d) t, where, t(x) = f(x + 2), < x < 1.

179.



Appendfx A

- INFINITE DECIMALS'

1. Decimal Representations of Real Numbers. It was establish-
.

ed in Chapter It that integers and rational, numbers may. be represent-
.

.ed ae debimals, the former always terminating and the latter some-

;times non-terminating (infinite). It'was also shown that if a

'ratiolpal number has an infinite decimal representation, it is

erlodic in the sense that its digits repeat in a regular fashion.

This leaves unanswered the question: Is-eaerY periodic decimal the

representation of a rational number? ,After we answer,this in. the °

affirmative, there is raised the now question: What numbers, if any,
. 11* 4

are r presented by non-periodic infinite decimals?

Recall that a positife number* x is represented by an. infinite ;

decimal if x satisfies every one of the inequalities in the infinite ,

bet of- inequalities:

et <, k bk, .ak <,
,,..; 1 b.. ..1 ^ d;

- ak - ---7, ....= XypajO, 41.1 11

. 4, 10
where - P`,

.
ct,

-- ,

d, , d, . d d.+1 ..,

nt''' k
a =. c.10 c -*4-...+-= b - c 10 + +c + -24: 4.--k n a 10

10
k' k'- n o 10 "' 10k ' /-%

I .

.
I

( _

.° .

n is in,N, and each and.d is,some integer in (0,1,...,,9). The
i .. AL , I/ .

0,

we write x = 6 .2.
n

co.

We hall show that all real numbers have decimal representations
\

, 4
and all decimals represent real numbers,. Then,- ifs real number.fs,,

.471ww.

'. ..

----not: rational its, deq,imal representation is notpgriodio-i7-CdnVVr e

.. A.1 °

., . .
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. A.2

since every ational number is represented by a terminating or a

decimal, if aldecimal is, neither terminating nor periodic

it must represent a real number which is not rational. Here we have

a clear distinction between rational and irrational numbers -- a

grnction ofPeriodiity of their decimal representations.

The'above temarks,need to be verified. First, let us show that

alb decimals represent real numbers. Of course, if a decimal termi-

nates, then by definit4on it is the rational sum of a finite set of

rational numbers each f the form

i d
c _LO or i 0 S ei S 2, d

10
i

to stiOvr that all infinite'tlecim is represent
. '

.

. Thus it is sufficient

real numbers. Fo exale, consider the-infinite,deci al
. .

.. F and the corresponding infinite set,',of tefmina-
.

.23233233323333

ting decimals °

{ .2, 24.232,:2323,213,.232332;.232133

whe e earth terminating ecimal in `D contains one more digitttaall

the preceding. Certg ray Dis a non-empty set of'rational numbers'

whiCt has an upper bou d, 'say 1. Hence, by axiom,On.D has a unique*,

least upper bound which is
4

a real number. We shall how that WAS...,

unique lub of D is the r al number mpresepted byth infinite decil

mal :2323323332... . Consc e the infinite set of neqUalities:

.2 < .3 . bl

.23 < 1.24 = b2

.232 < 233 =



A.3

1'
Since an <bn, an ai

-n+1' bn+1 bn'
and

n
I

1

for
10

all 4n in 11, there is exactly one. real number which trifdes

every inequality, and this number is the Lub ofD. (See >blem 5

on p. In general, corresponding to each infinite decimal

.d
1
d2** .-dk**'

there is an infinite set of terminating de6imals
, .

D=

0 < di < 91, which is bounded above and has a lub which A6 the uniq

real number represented by .the infinite decimal. Ar

donversely,, every real number can be represented by.a.decimal%

This has been shown for rationals; it remains to be shoWfl for

irrationals. We first recall that any irrational numberimaybe

ue

approximatd as closely as desired by a rational number (see ,

Problem 4 (;(1 page,5.19); for our purposes let us state this tact
I
in

the foitt%ihg form:. Given any irrational number y and any positive

rational'nuMber e, no.matter how small, there,
.

s a rational numberv ./-
4
x. such tliat .

%

f!

x < y < x + e.

\

Now it is possible, to generate a set of successcive rationalc.approxi-
.

mations a
k

y. corresponding to the successive values of e:

- 1, .1, .01, .0,01, Hence, we hpre -a set of inequali-ties

0

and 'for every k in N,

< avt-. 1 = bo

1
< al + = b

1

1
y < a2 +, --f =

1 1Q
: . 1

!

< y < ak
1

= bk, 1,

10

- 1.82



A . 4

where. ak < bk, ak a-kW bk+a bk - ak = -4. This set of

rations.; approximations ak will be bountgq algTre'.and ww have 4.1s-

Its lub. The corresponding ilifinite decimal will represent y.

For example,' let us find the infinite decimal representation

of the?irrational number'./T. Correspondin5 toM/ =I,

1 <IVel + 1, 'since 1 < 2 < 4.
4

Corresponding to g = .1,

1.4 <

e = .01: 1.41 <,./27<

d e\= .001: 1.414 <1-2-<

1.4 + :1, since. (1.4)
2

< 2 < (1.5),.2 ..

1.41 '+ .01; since,(1.,41)2.< 2 < (1.40.2.

1.414 + .001, since ,1414)
2
<2<(1.415) .

etc. r.

The lub of theset (1,1.4,1.4121.414,) is the irrational number

../2, and is represented by the infinite decimal 1 414..: .

It is nbt surprising that the gompleteness axiom provides the
-./

answer to the problem of decimal r-epresentatisni of real ndmbers.

After all, it is'this axiom which-complete the chlaracterization of

'R. However, it -most. be noted that we hie striated ah existence

,

theorem for decimal representation of n irrational number. It

tells us there is a de'cimal, but it does not spell out a_niethod "fror
1 . :-'v

_
fir ling the particular digits /o' the detimalc- Fol?tquare roots

.

-_----
, 1

there are algorithms of bra olis kinds which:exhibit the digits
,

of

the represen+lon, but , idrIsponiirra 1 nuMbers as 7r, es log 2,

_ t

etc., we must develop special 'method for' each number.
,L

e ) . Now we are.adsured that any infinite
1

decimal, say
: . ! ,

:,
.

.
-I

. .32121221.:. =-.321 , i

. . . -. f ..

`
. represeats,a, real numberr. It remains.to'show that it isfa rational

t..._ .number if its representation is-jterialic. To iAustrate.the

183
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.

:technique we shall use, let us consider the periodic decimal :321.

Let :212121... represent.a real number N so-that

.3212121... = 10

N = .2121... => 190N = 21.2121...
Now

'==*. l0QJ' = 21._+ N

99N = 21- '

Hence, .3212121... 3 4.

= 10 330
, which is a rational number.

Long division will verify the periodieity.

It is interesting to study the decimal = .9.

*If.N = .999..., then 10N = 9.999... = 9 +N. Hence, 9N = 9 and

= 1 . Thus we see that the rational number 1 can be represented

by either 1.000... or by .999... This chdiCe Of%two periodic

decimal representations is possible for every terminating decimal:

=, .325000... . .34999... =

4.728 =4..7286 = 4.7279.
A

The technique used ibove can be applied to any peiodic deci-
.

mal as follows: Let us assumethet tge repeating block of k digits
i 2

4first occurs after the jth digit to the-right of N decimal point.
1,

, ,..

x= c c . .6 c A d ..d d d .d
n n-lt.- 1 p 1 2% .j j+1 j4\-2i-k

J ,
Tnen x is" the sum of a rational terminatingtdecimal ands. periodii

),decimal:

k digits

.z '. 1

, xv=:.encn_i....c16(5:id

. ..

di JtAd3+2'

(
SS ^

.18
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Let .d
!

represent d.real number N. Then\

,/ d d .d .d .d
k itl .14-27: j+.1c- i+a j+k

10
kN

= d .1 d .d + N
+1 j+2" j+k

N = dj4d,I+2dj+k

10k- 1

Thus,,N is a rational number, being the quotient the iritegers:

Cli+11`1:4.2..:di+k
and 10k - 1.

To summarize,... we list the facts we' have le rned:

(1) Every deCimal represents a'real num er.

,(2) Every real numbed has a decimal representation.-

( ) The infinite decimal .d1d2....dk repreients the'lub of

the infinite set Dof rational mtlers:
t

D = (.di,.did2,..did2d3,.,. id2...dk,...)
A

(4)- The decimal representation
4111

o a real number is periodic,

'1 if and Ally if it is a rational number (writing termina..,

ting decimals as periodic decimals with repeating zeros).

(5).. The representation of a real number is non:..periodic if

and only if it is an irrational number..
. , ,0

' 2. R is Not Countable. Now that we know all real numbers can be
.

represented as, infinite decimals, we are in a position to pro(le-a

statement made in Chap+r 4-: The setil is not countable( For s
1

plicity, let u .restrict our attenaon to the set Q of all real
,

numbers x.such that 6 < x <Al. , If we caxprove this set is not"
at

4dUntable,fthenicertai ly ii is not cou able.,

Let,us assume th negative, namel , that
V the set,! f all real,

.

, -

7 numbera.between 0 and I1 is countable, and obtain a con radiction.

Ui5
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This mans we assume a one-to-one correppondencebetween the elements

,N and Q. Now every real number in Q can be written as an infinite ,

decimal, where we may agree to write terminating decimals as period-

decimals With repeatingzeros-. -Then we form the correspondence:
.

1 .ala2a3...

2 .b b b1 2 3 k-
3 4--4 .cic2c3... ck...

.rir2r3... r,...
-

where all the digits are in the set (6,1,2,...,9). By assumption,

every real number in Qs in this list. To show a contradiction

let us construct a real ngmber x in Q: which cannot be listed.

Forin
x ..t t t .t1 2 3 k" . '

with not all its digits 9, where tlis aidigitibifferent.from al, t2
2

isidifferent from b2, t3 is different frOm c
a,

't
n

is different

ftqr&.r.," , . Certainly, x is different from each peal number

eisted because it differs in ate leapt one digit from each of the

p pumpers:, Yet x must be in Q-because it is repres- -d by a positive

d cimal ich ip leas than 1.1 This is a contradicti4; hence,
?"'

Ti

L

t. countable.

iEx rc ses 1

,

Find the rational number rept, sented by each of the follekin

1
periodic decimals; 4

/V

Oa

186
WO.

64"

. '



(a)

(b) 4.31

A.8

(c) .0036

(d) .142857

(e) 6.350

(f) .1c4

2 etermine the first four elements of an infinite set of termina-
9,

decimals whose lub is,,.,4

./5 (c) 31f

35-- (d)

. Find a:terminating decimal.
\ .

'.(a) bltween %/Ta.tid %/67: 10

4 e, ,(Hint:, I< t.</./6-- 4=;5 < t2 < 6)

(b) between ,(113 and 41-1,,

( between. -32 and -32-
33 33 .4

'4.' Prove that the infinite decimal

:ld1001000100001000001...

c

where the number of 0's between.successiye 1!s increases as

indicated; represents an irrational dumber..

22
5. Explain why neither 3.1416 nor 'represents the, numbey r.

7 A,
1

6. A real number may be represented by an infinite set of digits

' taken from any set 4 integers 'of the form (0,1,...:(k-1)): k.

k fbr.example, we have binary representation. Then

1 1
10.11

two
= 1.2+ 0.1 + + 7

. 2

Find the rational numbers in the binaPy scale represented by

each of the following periodi binary forms: 1

(a)
I ..

(b) .01

(c ) .110

(d) 1.0101

0
fp,

187
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Appendix B
\

COMPLEX NUMBERS.'
la

There are some desired-properties that the set R of real numr

bers,does not have. For one, the equation x2.11- 1 = .0 -.does not

have a soluld.on in R, As long ago as:the beginning of the 19th

4
century there were attempts made to .develop a number system. in

0
,

which such equations have solUtions. In the 1840's Hamilton intro-
.

duced the complex number system as,follows. '° .

Just as each point of the number line is associated with a

real number, Hamilton associated each point of the plane

complex 41.1.thber denoted by an ordered pair of real numbers

His initial problem was/to define equality, addition, and

cation of these points" in such a ,way that the resulting

with a.

multipli=

system of

complex numbers ls. a field,which includes. the system Of real numbers

as a proper'sulidistem. He was motivated in his definitions by:the
a.

desire to have:the solutions of the equation x2 = -1 in this
/

system and by the obseryation that comply numbers should add like

vectors.

M. -1

1.1

B.1

I

1
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r l' ..0-...i..'

Definition: Consider. the set'Z of all ordered pars (a,b),.. a
- ..

. -

c, end b in R, with '=", "+°, "."' defined for

,*

these elements as foljows% For a, b, c, d,

(a,b) :and (c,d) are in Z and e
g. ,

(a,b) = (c,d)4=17= a = c and b ='d

(a,b) + (c,d) = (a 1c, b +

(e,b)(C;d) = (ac

The resultirig s$/stem ' (Z, ) is called th
4

COMIZleX number, system.

The reader is invited,to.u.s-Ohe prOperties of ofer#tions in I.

in B,

to p *that the set 7 is'cloW under the operatigns +, as
. ,

defined above, that these operations ae commutative and associative,
. .ou

and 'that' is distributpe throe h "IP+. Sinct

(a,b) + (0,0) = (a,b) and (a,b)(10 (a,b)

.

for all a, b in R, the systein.;contains an ad identity'

(0,0) and a multiplicative'idehtity Fx,O AlSot since

Ca;t0 47(-a,-b) = (a,b) for al a,-h

and

)-.

-b ff(-4A'( 2e. 21/ for, all
a b a + b '41114

(a,b) (0,0),

the syste o4ains an Additive inverse, (9.,-b) for each element

-b 1(a,b) and-a tiplicative°inverSe ( ,'a
2' ,2 ' g'

for each
'.. a * b 'a + b

/ on-zero !element
,0

(a,br. We cone We that the system' (Z, +, )l''

Ht- ':
atisfies axiofis Fl to F7 and is a :field; a l' thepropertiee proved

3

,,
, ..

for a field acre enjoyed by the sysVA ompi numbe

o

t.;.

numbe

_.,

It shbuld be noted immediately particular sUbset Rt.that:
;,

of
v-

consisting of- all complex numbers tik '' form la,0) is a'
a .

..

very familial, set.' Consider, the following's operties:
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(a,0) = (c,0) > a = c fora, a in R,

(a,0) + (c,0) = (a'+ c, 0) for a, c in R,

= (ac,0) for a, c in R,

(a,0) + ( -a,0)= (0,0) for,all a in R,.

(a,0)(-k,0) = (1,0) for all a 0 in R.

We conclude that,tkie system (R',-+, ) is also a field. In fact,
., .

_......

Ilk it is i ve mspect.iike the field of real numbers, for

o

,there Is

.

a one -t -on6 correspon ce bEttween R' and R in which thq complex,

number .(a,0) corresponds to the,real number a and in which the
y

operations_are preserved:-

(a,91 4-4. a

(a,b) + (c,6) 4* a +c

(a,0)(c,0) 4-* ac, for all a,c in R.

Because of this operatiln- preserving correspondence and the

fact that the-systems have the same structure, we adopt the con-
,

vention that R' andR are the same set, and we write a in place

of -(a,0). whenever convenient. In this sense me---have e-s-hown4hat

the set R of real numbers isa sub'set of the set Z or complex numbers.

' Is R a,proper subset of Z? To answer this question in the

affirmative let us concentrate on the_element (0,1) in Z. By,

definition,

(0,1)(01) = (o- 1,b + 0) . (-1,0) . .-1., ,j-,
, ,,

Hence, we have Found an elem nt,in Z whose ;n6quare is the real

1'number -1. Butt we km* tha there is.no real number whose square
1

is -lf We conclude that (0,1) cannot be identified real

number. 1117ws, R / Z.

This complex number, (0,1) is call6d the imaginary unit and

'
V

4,

is denoted by i. Now we ob4erve that

p

f



t

implies
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(a,b (a,0 ) + (0,b) and (0,1).(b)6) = (0,14.
4,91,

(a,b = (a,0) + (0,3).(b,0) -; a + ib.

The notation a + ib for a complex number i,s more convenient than

(a,b)` because it gives us a,device for remembering the.definitions

of addition and multiplication oi complex numbers. Making use of

the associative, commutative and distributive properties, we have

(a +0.1b) + (c + id) = (a + C) + i(b ± p),

(a + ib).(c-+ id) = (ac + it5d) +- i(ad + bc)A

= (ac bd) + i(ad + bc),

since 11'6 hl,ve shown that i2 ='-1. Furthermore, i3 = = 1,

15 = i, i6 = -1, ..., so that every number of the form

Ata
0
+ a

1
i +'a

2
i
2 +^... + ani

n
'

where ak ls irC R for each k = 1, 2, 3, ..., /.1 can be ekpressed,

4
in the 'form a + ib7 a aria b in R. .

The 'set .,.of complex numbers df th form (a,b)-; b / 0,:
,

is

Called the set of imaginary numbers. Thus, the set Z can be conm

sIdered as.the enlarged set obtained by annexing to the xeal numbers

(complex 12Umberi of the forth (a,b),. b = 0) the set, of imaginary
--e: --',

Numbers (COMpla-numbers of the form (a,b),\' b / 0) .

? . ,
,

,__ The set Z is assoc, ited with the set Of-points in a plane by

the simple device,of referring'to a pair of rectangular coordinate

. : :'

each:axes and letting each comPlex number -(a)b) correspond to thelpoint

(a,b) in the plane, a d b' in R. .. !

Y
.

4.

tt

J
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Ima inary axis

(0;0-, 0(a,b)

lit(a,o)
Real'axisrlOeC5

Thus, the real number correspond to the points

(real) axis, and the

on 1:16L-0-0T-1,10nta3

imaginary numbers correspond Olthe Points In

the plane not on the horizontal axis. is clea./1 that the'complete

ness of R guarantees that every point of the real ails qgrresponds

r,..._5"L_. ,..to a number of the form (a,0), that every point off' worti ,...,_
/

(imaginary) axis corresponds to a, number ofthe.for'q cO,b)", and,
O e '' ;,, r .

'finally, thatevery point of the plane corresponds to
. ..- . .

.., Or .44,4.:Ak: ...A '.1111,.'..z,' 7.t: :4,

he -fgr\ a.',,b). All these correSpo ences are.One -to -on '

, ....,,

.-0` Let us review the.properties ;7of Z:
A-

,

.....

.1 .

a number of,

(1) Closure. The set Z ls Origs'ed under additicin,_subtrac4ion,
. ,

multiplicatilerand division (excluding dOision

Of primt importance is ,the fact that if,14e16(mrp*'

number, then 77 is also'd complex nutiberfor any n

tin N. We shall not prove this here; the-,iy4

a differentsentatAgO&PCOmplex nuTpers. Tge:
----4-4:

a
e.

fequIltion = a, Z Ail more
' ..

Vaiviable
,'---:.-_ 4,,!',

=.0, .

. 0 .s
a
i -

in Z, has a solution in Z.This remaYkal;. e thegrem,
. h,

called th'efundamental theorem of algebra;-was f at.1

generally, every

anx
n + a

n-1
xn-1 +

in Z, has a solutl

I

omial ation in one

r
r:

6.
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proved bypauss'in 1799. Thus,a no more extensions'

beyond the complex number system are necessary for
1

solutions of po.lynomiaL equations. A consequence of the

fundamental theOrem Is that ever .polynomial can be

factored over Z. For example,

x
2
+ 9 = (x + 3i) (x 3i),

2
+ 2x + 5 = (x + 1) 2

+ 4 = (x + 1 + 2i)(x.+ l'- 2i).

(2) Completeness. The system of complex numbers is complete

only In the sense that there is a one-to-one correspondence

between Z and the set of all points in tniplan4. The

axiom of completeness applies only:to ordered systems,

and there is no way to define order for complex numbers

so that the order axioms 01 to 04 hold true.
.

In Chapter 1 we remarked that the most important discoveries

in algebra have been made by studying structures of systems without

regard for the models suggested: For example, a large part of

modern abstrNt algebra was motivated by Hamilton and Cayley in th'

1840's when they looked at some known results of algebra from the

point of view of structure. The,ir ork contained' one of the first

illustrations of the possibility of making significant new discove

ies in maAema,picsas a result of xamining the structure of kno

results.

The known results at that time were the properties

, numbers.,. It was kndwn that real numbers can be ass

, points of a line, and that there is- an orderins, bers.

4.

4

4
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, Tf the real number a is positive (a > 0) or negative.(a < 0),

, at+ 4 +.:... + -r21theri a2 > 0. Thus' a = a implies that ,'r

al = a2 = = an =,0, and
2

= b, b < 0, has. no solution among

the real numbers. Cauchy, Gauss and others* introduced a solution

i of the equation x2 .= -1 and adding, this "imaginary" number to

the real numbers, saw that the resulting number system contains all

.expressions of the form

a +' bi + ci
2

+. di
3
+
f...

all of which simplify to r + si, where a,b,c,d,...,r,s are real

numbers. Moreover,

(a,+ bi) + (c + di) ='(a + o ) + ((b td)i

(a + bWc + di) ="(ac - (ad bc)d.

This was the situation when Hamilton came on the Scene in 1843.
,

,First of tall he looped at complex numbers, as numbers of the

forM a + bi were, called, from the viewpoint of analytic geometry.

trust as a point on the line correspoWds to d single real number, so

a point in the plane can be made to correspond to a single pair of ,

real numbers (a,b). Thus,'4U5,thilton thought of each'point of the

plane as a single complex number which,he denoted by a number

couple (a,b). His problp was: Can multiplication of points be.'

defined intuch a way that the 'system has the same structure as, the.

real numbers, at least as far as additfOn and multiplication are

4
concerned?

I

a

*See Z.T. Bell, Men of'Matpematics, pages 232-234.
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He proceeded to define addition and mult

Of the plane, as was done earlier in this sec

able ~to show that the.resulting system, like

the properties of a field, and alsO contains

equation x2 = natelY, x = (0,1).

He observed more. The distance from the
s

(a,b) is given by -1a2 44.1)2; if e is the

(a,b), we write 1z1 = .NA2 +1b2 and call

z. Nowevery complex nUmber z = (a,b) and

= satisfy the quadratic equation wi

Also,

and-

z
2 - 2az + a

2
+ b 2 = 0,

1z12Z = = a
2'
+ b

2

izli iz 12 = Iz1z2i2.

Finally, if z
1
= (a,b) and

tht is,

iplication of p nts

tion, and then

the real numbers, has

a solution of th

origin to the p

complex number

kf the modulus

its conjugate

th real coefficie ts:

z
2
= (o,d), then

(a2 + b2)(c2 + d2) = (ac - bd)2 + (ad + bc)2;

the product of two sums of two squares can be written as

the sum of two, squares. This 'result led Hamilton,

others to ask: Can the product of two sums

written as a sum of n squares? In other

of n can we write

'('al

2
a2

2
; an

2
)(1)1

2
+.15224-

/

where Al, A2, ..., An- are certain sums

n 2. "

9 5

ords,

Grassmann and

squares be

for what values'

b
n
2
) = A

1

2
+ + A

n '

nd products of

4
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Here wa haVe the Second of two important problems. The fii'st

N
can be generalized as fellows: Call n-dimensional space the

colleCtion of all points (xl, x2, ...rx-1.-),' where each xi is

a real number, and add points according to theaaw

(a.1%a2, .., an) + (b1, b2; ..., bn) = (al + b1, ..., an + bn).
,

For ;Or:at values of n is it possible to define multiplication of
k

4 \,.S
(al, a2, .,., an)(ba, 1)2, ..., bn) = (cilc2, '..., cn) .

-----in-such a way that the resulting) system has qle s,,ructure of a

r

. .
1 . / 00 :-field? .

0

Both.probIems were already solved for /no= 2. Hamilton made
- . / 00 ,

the discovery that when n = 4' the first//Problem of defining
c8i

multiplication of poihts in 4-space is pOssible and the resulting

pOrnts

system, which he called quaternionS, had all the properties of a

field.eXcep for the commUtativq proPortrof Multiplication.

,the process he also solved the second prbblem for n = 4.

;

Cayley in 1845 showed that b phOth pro6lems have a solut for

n7 = 8,;, hovJ,ever, inithis case neither the commutative nor the

associative properties ,of multiplication'hold.

c
. Much effort was subsequently expel-40 on bOth problems. In

1898 Hurwitz proved -that .6:he...second problem has a solution only for
.

n =-1,-2, 4, 8. The 'other probleM remained open until 1940 when

the, Swiss mathematicianfHO ipf'used
powrfa'new Methods of algebraic

topology to -show that the first problem.has solutions only for n
,

.a power okf Then ,in 1957, `using still more refined topological

methods., solution was finalay giVen-irid9pendently by M. Kervaire:

and .J. Milnor.

,

.196 ,
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The reVlet is that Hamilton and Cayley had found them all:
4

the only values of n for which we can successfully define multi-

_pligation of points in n -space are 1, 4, 8.

Exercises

(
. -Using the definition of operations on complex numbers, prove

that in the system (Z, +, ):

(a) multrplication'il associative,

.

(b) multiplication is distributive.through.addition.

(If 1.1. = (a,b), v = (c,d), w = (e,f),, then

u(v + w) = uv +uw.)

Using the definition of,equality of complex numbers, prove

that:

.(a). (a,b) = (c,d) and (c,d) = (e,f) == (a,b) = (e,f).

(b) (6.,b) =*(c,,d) (a,b) + (e,f) =J(c,d) +.(e,f)

c) (a,b)-,j,d) === (a,b).(e,r) = (c,d).(e,f)

3. Solve for x in Z: -

(a)' x.2 + = 0

(b) -3c2 + X 4: 1 = 0

3 2
(c) 2x -'4x = 3x

(d) (x 3) (x2 5)(x2 9) = 0

= (3,-1), ,w = (0,3),, compute

a) u v

(b). `1,4

(c) u(v + w)

(d)

(e) U u

( f ) w

(g). u2 - v

(h) .0 v w

0

0

0

r9 7 -.1
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5.' We associated with each ele ent. z.= (a,b) in Z a number
,

. N
IZI =-1a2 + b2 in R,"called\the modulus of z, which

- .

represents the distance
/
between the poihts (0,0) and .(a,b)

Show that if u and v are in Z, .then: .'

*(a) lulIvl = (Ivy'

(b) lu,+ vl..< lul + Iv' )

sk

(CJ iuI2 = uTi . , O 4

J.' ' .
e

kd) If we estabaisivan orde/f- among .elempnts of Z.bY the
..,

It..definition

u v < > IuI < M,
which,:if any,..of the order axioms are satisfied?

.1.

o ,9

o

.

a

.

0

, 0 4

4 0

.

I

1 9 a



l

Appendix C

ALGEBRAIC NUMBERS '

A .

When a student visualizes the set R oi'rreal nuMbershe usually

.thinks of two subsystems, the rationals and the'irrationals, which'
*

are dis oint. That is, a real number is either rational or irra-

tPonal, but not, both. H.e is utu4lly content to let the matter rest

there:

- But the mathematician is forever 'clasifyig. He knoWa that

the set of rationals countable and.the set of irratIonals'is not.

These questions naturally come to. his mind, 'Akre there other possi-

ble cl.assitications Of "the seals ?, 'Is the set ;F of rationals thel,

largest coubtable subs.gt of R? It turns 06f that,his:curiosity ,

leads him to the discovery that there are other classifications of
.

the Teals,' and there is a countable subset of Rwhich conlins "F, as

aproper subset,

These .3,esults...usually surprise a, student. Why ShoUld he be
It

surprised? Possibly because he has a limited.experience with irra-
. A c.

.

tionals. When asked for an example of an irrational he will probab-

713r.say, " vq" where x is an integer which is not 'a

perfect nth power." When asked for 4ri example of an irrational

which is%not obtained .as a root, seldom will he respond with r.

e.,.tIDgEithms ancl4rigamia1atU

to give log 2 ar_sin ds an example. .SomehOm or other he thinks

C.1

199



C.2

of values of logarithmic and trigonometric functions as "differ-

ere numbers

of the reals.

the nth roots

which are real but'vaguely unrelated to the properties

To him the bulk_of the irrationals is, found amcing

of integers. We shall show that this is not the case..

0 How, can we characterize numbers which are obtained as roots?

By definition, 5f3 is a solution of the polynomial equation

4 x5 - 3 .0. 1 + .127 is .a solution of the polynomial equation

x 2
- 2x -.1 = 0, as the reader may verify. These and other examples

suggest a new classification of the real numbers in terms of solu-

tionsof cextain polynomial equations. In the following, by "poly-

.nomials" we shall mean polynomials with integers for coefficients:

Definition: The number x is called.algebraic if it is a

solution of some polynomial equation

a
n
x
n ,n-I - alx ao f 0,

where each a is in I andin is in N.

If x is not algebraic, it is call4fJ-

transcendental. '1

Let us here restrict our attention to the real numbers. Then areal

number is either algebraic or transcendentaL but not both, depend-
.

ing on whether or not it is a solution of some polynomial equation.

What is to be learned from 'such a new classification? First

notice that all rational' numbers are algebraic (being solutions

of ax - b = 0, a and b in I, a 0) and all real numbers of the
4'

'form 11.,g, a in I, a 0, are algebraic. But some real numbers

of the form
-n
vrii: are not rational. Thus, the set of, real algebraic

numbers includes F as a proper subset. Butis the set of real aage-

brain numbers countable? .

2 U f)



C.3

The answer is 'Eyes ". We arrive at this result as follows: First,

let us accept without proof the fact that corresponding to each

algebraic number A there is a unique polynomial equation of )owest

degree n such that A is a solution of the equation.

For example, if A is the rational number there is a unique.

equation of first degree, namely qx - p = C, which is satisfied by

A. If A = nf, there is a unique nth degree equation, xn - a = 0,

which is satisfied by A. In general we would follow the line of

reasoning used in the following example. COnsider the algebraic

L-13 + viTTnumber
2

Then 2,c+ 13.= 115, and 4x2 + 52x + 169 = 315; thus

2
2x +.26x + 27 = 0

is the.alynomiaE equation of lowest degree, namely :2,, whose solu-

-t3 +
2

1717175
.

tibn is . '4see that this is the. lowes,degree

because-We must square both members of the equation to obtain a

polynomial equation. \---

Next, we define the index of the polynomial equation

a
n
xn + a n-1 x 1+ + a

1
x + a

0
. 0

to be the positive integer

h = n + Ian! + Ian -l1 + + ball + laol

Now for each positive integer h there is a finite number of polyno-

mial equations having index h. For example, there is exactly one,

equation with index h = 2, namely, xi'. 0.

Thei'e afQ exactly '4 equations with index

2x = C, x + 1 = 0, 1 = 0, x2 = 0.
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There are exactly 10 equations with index 4;

x + 2 = 0, x- 2 = 0, 2x + 1 = 0, 2x - 1 = 0,
.

.

3x = 0, x
2 + x = 0, 0, x2 +.1 = 0,

2--..x

2
= 0, x

3
= O. .

(Note that we are considering only real numbers and thus will dis-

card the equation x
2
+ 1 = 0.) How many, polynomial equations have

index 5?

Now we have a scheme for counting the algebraic numbers. F9r

each successive value of h = 2, 3,*1, 5, ..., there is a finite
1

"number of polynomial equations each with a finite number of roots

which can be listed in some order. Thus, there can be established

a one-to-one correspondence between N and, the set of algebraic

,numbers. As a consequence:the'-set of algebral:c np.mberslis count- .

able-and has F-as -a proper subset°. ,\.

-liThat-re.some properties of 'ale real algebraic., numbers? It

can be'shown that they satisfy tbe_axioms.for an ordered field but

not the completeness axiom. Also, since the set of real algebraic_.

numbers is countable, the set'of real transcendental numbers is nlot

countable. (Otherwise, if both the algebraic and transcendental

nuMbers were countable, then Rw3Uld be countable, contrary to

fact.) Thus we see that the bulk of the irrationals is found among

the real transcendental n4bers
_ -

Here we have a strange situation. There are more transcenden-

tal numbers than algebraic numbers, but in our study we have not

even proved the existence of a single transcendental number. In

last, such a proof is extremely difficult and was not adcomolished

until the late 19th century.

O



The most familiar transcendental real numbers are it and e.

It wasinot krlown until the 19th century that 7. is irrational, and

not until 1882, with the proof by the German Lindeman, that it is

also transcendental. There is a:, fascinating history of, the growing

understanding of rr, the ratio of the circuiprence of a circle to

its diameter. The Bible, approximates it as 3; school children

22.
approximate it as For centuries it was assumed rational, and

a favorite unsolved problem was that of "squaring"the circle --

finding with ruler and compass a square whose area is that of a

,given cArel . Since operations with straight edge and compass are

analogous to solutions of first - and second-degree Olynomial

equations, we now khtlow that the,. circle cannot be "squated" becaUse

V is transcendental and, hence, cannot be the root of such an

equation.

The number \e, which is the lub of the set

* 2

((1 +
1

,,(1 + 4,) , ...,.(1 +
-,..)-n

, ...),

is remsented by .7182818...; it was encountered in the develop-

ment of logarithms aid is used as the "natural" base of logarithms-.

.In 1873 the Frenchman, Hermite prayed that e is transcendental.

The transcendence of eal numbers such a8 20'17 and log 2 are

more recept 14esUlts,* known only since 1934, when it was provd

that M is transdendental if M is algebraic and a is alaebraic,
4 \

and irrational. This' reTllt
.

establishes the transcendence of log r
.

if r is rational and lbg r is irrational: By definition,
,

.......i,TI.1.........!.... flog r

*See thapter 5 of the SMSG Monograp4,1"Rational and Irratronal
Num4pers", by-Ivan Niven, for a discussion of these results. Also
see Chapter 7 for a proof of:the existence pf a real transcendental
number. o4

1,,

. )2(13
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Now if log r were Algebraic and irrational, :then r would be trans-
,.

cendental, according to the above theorem. But r is given rationali-
4

hence, log r is transcendental.

To summarize, we diagram the complex number system as follows:

Imaginary

Algebraic //

Transcendental

000
Rationa

'3- 000

Irrational ++++++
. ,

Integers

0040154P2Cp
A

040060011°P
4APR rAWIMIAWArrAirArAir

WOVAdtlaFvi 41.1) j wArAv"Awar""4
parrIATAr/AMMIIII0

1
0O7P

.11
11:1M2IMM

7-7

(The relative areas of the regions in the above- gram do not in

any way indicate the relative sizes (cardinalities) of. the various

sets.)

Thus, we see that every real number is either algebraic or

'transcendental, but not both. Evefy real transcendental number is
. ,

irrational, but some irrational numbeis are algebraic. -And every

rational number is algebraic, but some algbraic numbers ,are irra-
.

. .

tional. .

Exercises
,4

1. Prove: If A is algebraic and T is transcendental,_then

(a) A + T is transcendental,

(b.) AT is transcendental,

s

(c) r;,/7fris transcendental.

2. Is the set of transcendental numbers closed under'

(a) addition, ('b) multiplication, (c) division?



Ans. 1

Answers to Exercises; pages 1.15 - 1.18:

L

1. .E x 0 = E, 0 x E = E; 0 is an identity for x.

x is distributive through +, but + is not

distributive through x.
t

1
2. The set is closed under o .and *. o is- commutative,

4 but * is not._ r is an identity for o. Tbege is no
-identity for o Is not diltributive through * and

* is not distributive through o. Every element has an

inverse under o.

3. 0 A B C

B C A

B C B

- C A B C

This set,and this binary operation form an algebraic

system closed under o. o i6 commptativetand associative.
C is an identity element for o and every element has an

inverse under o. The system is a commutative grdup.

4. The resulting system is a commutative group.
)

5. Yes.

6. Yes.

7. This is not a group lince v does not have an inverse

and ++ is not associative,since, for example,

u (u v) =; u +IF r = -1.1, but (u++ u) -H- v = r +F v =
0

8. Yes.,
Sr

9. Yes, it is a ring. 1 is an identity for but.no

element of I except 1 has an inverse under, x.,

x As commutative.

I



10. Yres, this is

13. (a) Yes

(b) No

(c) Yes

Ans. 2

. -

a commutative ring.

(d) No

(e No

L.

Answers to Exercises; pages' 2.7 - 2.9:

1. ..c = J, E = H, A = D.

2: C, E,

E are

3. (a) one-to-one

H and J ye proper
proper, subsets of q.

(ID)

(c)

4. .(a)...Infinite.

(b)

5, (a)

(b) No

o (c) Yes

many-to-one

one-to-one

Not infinfte

Ye S'

(d) N'o

(e) No

4 IL

0
subsets of W. H and

. (d) many-to-many

(e) many-to-One

(f)

(c)

(d) Infinite

(t) Yes

(g) No

(h) .Yes

(i) / No

(j) Yes

3 is a prime , but 4 is \not;, that is 4 =' 2? is the

product of two numbers both greater than 1, but 3

tnot and, hence, the difference in answer to (a) and

many-to-one

Infinite

(b).
4 4;

(k) .."

(1) 'Yes

(m) Yes

1 0 6



Ans. 3

1

6. (a) 0
3 5

_ -3-

b 13)
4 3 5

3

Ir

Answers to Exercises; pages 2.19
1. ' (a)

0

2

A B A end B A or B not-A if Pothen, B not-A or B)
T T T T F

a
T T....-,1"-

°
F T F . T . T'

. L.._
. T

.,

T

T F F T - F F - P

F F F T T T

A B A and not if not-A; then B if B2 then A

T T F' T T ,

T ,F T T , * . T

F T F T F

F 'F
i

F , F T

to)

A B if' A, then B A or B A and B A and not-A

T 'F F T 'F , F
.

-not possih
,,

e

T T T T T F

F F T F

a
20 7,
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Ans. 4

*

2. (a) (1, 2, 3).

(b) The set of positive integers.

4.,

( c ) ' 0'. empty set.

(d) The sit of positive integers.

(e) The set of positive integers.

,(f) The set of positive integers greater than or equal

(g)

(h)

(i)

(a)

(b)

to 4. (4,5,, ...).

(1, 2, 3, 4, ..).

(2).

(2). !

(1, 2).

0 I

(e)

( f)

0 I 2 3

2

4..

a.

MIK

8

0 -

O



(h)

And. 5'

0 I, 2 '3

(3)
0

.

4. (a) ((14 1), (4 2), (9, 3), (16, 4), (25, 5) , (36,. 6);).
(b) ((1, 3))
(c) ((]:; 4), (2, 3), (3, 2), (4, 1). (2, 2)).
(d) 4))
(e) t(1, 2), (1, 3), (1, 4), (1, 5), (2,, 2), (2, 3)

(2, 4), (2, 5) ).
(f) ( (-1, 1), (-2, 2), (-2, 3), (-3, .2), (-3, 3)). (

2 3

5. (a)

(b)

(2,1)

1 . 2 3

209
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0,a

'i.

, .,....., i.
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(f)

d

Ans. 7

-2

Answers to Exercises; pages 2.32 - 2.34:

1. (a)

A B ,'.if A, then B not-A not-A or B.

T T T -F `T

F: . T T T T

T F F F F

F F . T T T'

Two statements are equivalent.

o

A B not-A not-B A ox not-B not-A and B

T T F F T T ,

F T

.

T F F
.

T

T F I',, T T F
4

F F T T T T .

Two statements are not equivalent.



Ans. 8

(c)

A B if A, then B . it B, then A

T T T 4 T

F T

.

- T

.

,F

T F F
c

T

F F T T 41

Two statements are riot equivalent.

(d)

A -13 riot -A not-B if A, then B. if cot-A, then not-B

T T F .. T T

F T' T F T

.

F .

,e
,4TF

,

F. T F

.

T.

.

F ,.F T T T , T

Two.statements are not equivalent.

(e)

, A B not-A not-B A and B not-(A and B) hot-A or not-B

T F F' T

.

F F

F TI, T F F T T 't

T FI F T 'F T T

F F T F T ° T

Two statements are equivalent.

x12
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A B riot-A riot -B (A or. B) not-(A or B) not-A and 'not -B

T T F F
.

T F .

F.'
.

F T T 'F T .F
.

F

T 11' F

.

r
T

l b F
.

. F c

'F V T T ' F T

Two Statements are equivalent.
c

(g)

A B' not -B( if A, then B not-(if A, theri B) if A, then' not-4;

T T F T- F
. .

F,

F ' T 'F , T F 'T

T F T ' F,

. .

T ' .T

F F T T . ' F' .T

Two statements are not equivalent.

(h)

A B not-B if A, then B not-(if A, then 13) A and not B

T T 7 T
-------,_

F F

T F 0 -F F

T

nor
-

T
.t.

F T T

F F T
%

. F
.

F ,
.

'Two statements are equivalent.

$

2 13

11.
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Ans. 10

A B< ->no A or B

not:-(A 'and B)------>not-A or not-B

not -.(A or ,e,13)-.1 and not-B

not-(A > A and not-B

The negative conjunction is the disjunction of the

negatives; the negative of a disjunction is the conjunction

°of. the 'negatives.. ' The negative of a conditional is a

donjuliction.
a

( a ) 1-If hot-C then (not-A and not-B).

(b) ''If A or not-C) then'not-A.

,-(c) If (no -
I

fC and not-D) then (A and 'not-B)

. ;Td) .If (C or D) then (not-A and If) .

0.' .gt I '1',

3.,.°-(a)A kAre x / o.
rAny x b sand / 1.

- ce.

` -(c) 41', -82; in fact 41k for -any integer k.

`,(d) Any x 0 .

. t

,4t.

(e)..4,."--- I. yew
'

(X) = o.

(g) '(x = o y = 0), (x = 1, y = I). Any pair
.. d

4. (a) Direc I proof.

N.... Pyoof by contradiction.

(c) .Cont apsitive.

4 1 4

1
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Ans. 11

Answers to Exercises; pages 3.14 - 3.16:

8. x (b + c) -a
w

9.. x =1

12: Subtraction is not commutative, 0 - 1 / 1 0. .It is

not associative, since (1 - 2) - 3 = -1 - 3 = -4, but

1 - (2 - '3) = 1 - (-1) = 2.

The set is.a field-with these two 'opepations. The

additive inverse of 3 is 2 and the multiplicative

inverse is also 2.

.

13. This set is not a field, since not all non -zero elementh

have multiplicative inverses,1

17. This is rIbt.a field since some non-zero elements, such
. .

as (0, 1), do not'hasie multiplicative inverses.

. f
Answers to Exercises; pages,3.24 - 3.27:

8. (a) x> ( e ) x > - or x < -3

(b) x >,1 (f) x > 0 or x < -1

(c) 1 < x < 4 (g) (x > 0 and x < 2)

1
or X < 2.

((d) x > 3 or x <

*".

5

4

.4.
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Ans . 12

9. (a) 0

(b) x > a. or x < 0_

(c) x < 1 or x>
I,

(d) x = 0 or: x -1 -2

(e) 1 < x <'3

(f) all x in 7' not equal to '2

1
(g) x >.,./5 or x < --..r. or -1',/3- < x <

jh) 0 < x < 2
1

(i) all x

,

N

10. (a) ((0, 4), (1, 3), (-1, 3), (2, 2), (-2, 2), (3, 1),

(-3, 1), '(4, 0), (5, -1), (6, -2), (7, t3)')

(b) ((-3, -1), ( -3', 7,, (-2,, -2), (-2, 6), (-1, -3);

(-1, 5), (0, 4); (1, 3), (2, 2), (3p. 1), (4, 0),

.

,

(5, -1),'(6, -2), (7, -3))

(0 ((-1,,-3), (-1, 3), .(1, -3), (1, 3i, (2, 2),

,(-2; -2), (9, 4.), (4, 0), (-3, -1), -(-3,1),
.

,(3, -1), (2, -2), (3; 1),-(-2, 2), (o, -4), (-4,o))

(d) 0

(e) 0 0.

(f). '((o, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, J.

(2, 1), (3, 1))

11. (a) .

AP

c

-



Ans. 13

,

1.

(b)
2

..... t

le

4

-2 -I 0 I 2

-1

,-2

(d)
4

3- .
.

2 - . ,

I .

I la I II

3 -2 -II 0
I

- 4

4.'2

t

3
I

4 ,

S. -I-
A

..

a

- -2-

(e) /

"-......

r

p

.217

1

,

.

r
7



(g)

12. 01 and -.02 are satisfied but 03 and 04 are, not.
. ,

For example, 2 < 3 but 2 + 2 .t 2 + 3 . 0; 1 < 4

but 1+ 1 .t 1 -1-'4 = 0, and 2 < 3, 0 < 2 but

4: 2:3 = 1.

13. . No.

218
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Ans. 15

Answers to. Exercises; pages 3.38 -

3. (a) x = 3 (e) 1 < x < 2

(b) x = 2 or x = 4 (f) -5 < x < 3

(c) 2 < x < 4 (g) x= fl orf x = 3

(d) (h) -3 < x < -

A

Answers to Exercises; pages 4.7 - 4.10:

2.. No. There is no identity for addition; .and under

multiplication it is. not a grotlpisince no element of

N, except 1 has'.an inverse.

10. (a) b = 12, c

(b) b = 18, c

(c) b = 15, c = 10

(d) Impossible since if be = 84 = 2.2.3.7 and

b + c = 24, we have 31184 and, hence, 3Jb or

31c. But 3I(b + c) and, hence, 3Ib and 3Ic.

But then 91bc which is not true.

11. (a) (x + 2)(x + 6)

(b) (x + 8)(x +7)

(c) Cannot be factored in N.

(d) (x + 18)(x + 14)



Ans. 16

Answers .to Exercises; pages 4.15 - 4.16:

1. (a) 0 is an even integer.

(b) Yea.

c

0
2. (a) 90, 6, 1

3. The set of negative integers is closed under addition
but not under subtraction and multiplication.

4. (a) (932)ten

(b) (4.4)ten

(c) (110002)three

(d) (402)nine

5. I is a group under addition but not multiplication

since. 1 and -1 are the only two elements of I

which have multiplicative inverses in I.

6. 'I is not a field because ofiits lack of multiplicative
inverses for non-zero elements.

9: Not every composite in T can'be factored uniquely into
a prodUct of primes in T. 1For example, 220 is in T,

since 220 3(73) + 1, but

220 = 10.22 and 220 = 4.55,,

where 10t 22, 5, 55 are primes in T.



Ans. 17

Answers to Exercises; pages 4.31 - 4.32:

37 ' 47 4
1.- - <

12 <.5-g <5.

2' (a) ( &) ten

7.' (g)

8.

9.

10.

(1;)
(1.2)

four

The subset of all x with 0 < x < 1 has no least

element.

(b) Yes. 0 is the greatest element less than

element of T.

.142857

(a) (f)

(b) (1, -11

(c) (1, -1,

(d) (1, -1, "If v/F),

(a) (x2 - 3)(x2 + 3)

(b) (x -.,/j)(x +ra)(x2 + 3)

221
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'Ans. 18

Answers to Exercises; pkes 5.6 -

6
1. (a) 7, 1' are upper bounds, for example, and ,r is

the least upper bound.

(b) -3.5, \-3, 0 'orany positive number are upper

bounds and -3.6 is the, lub."

3. A non-empty set S of real numbers is bounded below if

there exists a real number M such that s > M for

every s in S. M is called a lower bound of S.

A real number L is a greatest loweir bound for S if:

(1). L is a lower bound for S and

(2), if M is any lower bound for S then M <.L.

5. (a) 7 is a lower bound and .11. is an upper bound.

(b) 1 is a lower bound and 2 is an,upper bound.

(c) 0 is a loiter bound and -32:. is an upper bound.

(d) 1 is a lower b(717.4 and 2 is an upper bound.

6. (a) 1 is the lub. (c) 0

(b) 1 (d) 1

Answers to Exercises; pages 5.13 - 5.14:

2. 1.414 > 1.41 but (1.414)2< 2.

3. 1.415 ( 1.42 ,but- (1.415)2 >'2.

r

222

.



Ans. 19

Answers to Exercises; pages 6.7 - 6.8:

1. la) algebraic over R

(b) raVonal over R -

,

(c) algebraic over I%

(d)

(e)

(r)

- 9)xy - 41-y, + 18x
2. (b)

r

If, xy2 - 2bxy + aby
` xy - ay - bx + ab

algebraic over

polynomial over R

rational over I

3. We know that a - a = a + (-a) = 0 for the real numbers

and having defined A - A =,A + (-A) for arbitrary

,algebraic expressions we must define this to be 0 in

order for the field properties to be satisfied. Similarly,

A
=A1A = A must be 1.

4 - x2 (2 - x)(2 + x) f(-1)(x - 2)))(2 + x)
x - 2 (x -

= (-1)(2 + x) x- (x + 2)

4 (a)

(b)

A .Ar

x - y 3 x - y -1 3 .x - 2y

4y2 - x2 x+ 2y 4y
2

- x
2.

-1 x+ 2y x- 2y

y -'x 3x 6y

-4y
2 + x2 .x2 4y2

y - x - 3x, + 6y
2 h 2

472

-4x + 7y

223
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(c)

7

Ans. 20

2
0

x`'(x + 1) + 2 - x2
x +-1

x2(x + + (-x) (x + 1) + + 1) + 1
x + 1

1 = x x + 1 + Tc-717
12 1

1

k

5. j (a)- x (x - 3) (xi- 4) over' I,' and R.

(b) .x(x - .)(x 7 2) over F and R.

(c) (y a)(y -./T- a) over R./

(d) (a2 - 2a + 2)(a2 +:2a.'4.- 2)* over I, F, R.

Answerakto Exercises; pages 6.17 - 6.18:

1. (a) (-3)

(b) (-3, 4)

(c) ( -3, ,

(d) (1, 2)

(e) 1)02, 1))

(f) ((1, 1), (24.1))

(g) The truth set is empty.

(h), The truth set is F.

(i) ' All x in R with x- > 1.

221



(b)

(c)

I 4 I I 4 I

I 2

-2-

.

..

4

r 1---

,,

225
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( f )

f

° Ans. 23

7

(a) (1, !)

(b)/ (I, 2, -1J

: 0

(d).

(e)
1

2 ' .2 ,.I

Answers to Exercises; pages 6.2k - 6.26:

. 1. (a) The domain is the set of poe1tive integers and the

range is the set (0, 1, a, 3, 4) .

° ((1, ).), (2, 4, (3, 3), (4, 4),-(5, d), (6, 1),

(7, 2), (8, 3), (9, 4), ...J. As a'graph

4-

3-

. 2-

--I- 1114 Ii I I

I 2 3 4 5 6 7 8 9 10 U

:

9
'where n = 5.k r

o'
0 < r

o
< 5.

.

227



6. ^

(b)

Ans. 24

The domain is the set of natural xunbers and.the

.,or,:ange is the set of natuAl numbers of the form

'3n 1-'2;4 b a natural number. f(n) 4 3n + 2.
a

To b.ch natural number n there is assigned the

number obtained by adding 2 to 3 times

+ 3(n - 1)?

('c);-The domain isthe set (-3, -2, 1, 2) and tbe

'range is the set (1, 0, 3, 4).

:((-3, 1), (-2,' 0), (1, ,3), (2, 4)).

(d)

f(x) + 2)2

Thedomain is the set of all real numbers x such

that 0 < x < 3; the range is the set of real

numbers y such that 0 < y <

2
f : x ---> + 2.

2 ,y = - -r c.

1104each x in R between 0 and 3 there is

asbigned the'r,eal lumber y which is equal to

-7 .times x plus 2.

228



Axis: 25

2. (a) All non-zero real numbers.

/ (b). All real numbers less than or equal to -2 or

greater than or equal to 2.

(c)

j

All real numbers x- such tJat x > 1 or x < 0.

/(d R.

. 3. (a) The domain of F is contained in the domain of f

and for x in the domain of F, (x / -2),

f(x) = F(x).

(b) g and G define the same function.

(c) h and H define the same function.

4. (a) f(- = f( 13) not defined, f(.) = ;.

(b) The set of all x in R with -1 < x <...0 or

ONx < 2.

(c) The range of f is the set containing -.1 and all

real numbers less than or equal to 2 and greater

than zero.

-(d) The set. of all x in R with 0 < x <.2 or

x.- -1. \

(e)

0

4

2"

No.

S.



Ans. 26

5. g(-t) = t2 - 1 = g(t)

-g(t) = 1 - t2

2g(t) = 2(t2 - 1)

g(2t) =<4.0 - 1

g(t 1) = t2 - 2t

g(t) - 1 = t2 - 2

g(g(t )) = t4 - 2t2

g(g(4)) 1 - 2t2

1 2t
2

- t4

( t
27

- )
2

1

5

This is the graph of one function satisfying the conditions.

There are infinitely Many such functions.

7. (a), (c), and (f) define functions.

3

230
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*Es. 28

(d)

o

ti

Answers to Exercises. pages A.7 - A.8: . .

41
+1. . (a)

333
( d) yr

( #

.., (b)
194
4-5 (e) TO

(c)

2. (a)

(b)

(6)

. ,(d)

3. (a)

terminating decimal between 4b.3 and 2.4._

(b) 6.6, 6.61, 6.624973, ..., 6.63 or any terminating

1 11

275 (f).

t1-.N
100

(1, .1.7, 1.75, 1.732)

(.3, .33, .333, .3333) 7

(1, 1.2, 1.25, 1.259)
.00

(2, -2-71e2.23, 2.236) ..

For example, 2.3, 2.31, 2.34, 2.4 or .any

')decimal between 6.6 and 6.63.

(c) Any terminating decimal larger than .93 and

less than .96. For example, .9599,

.96.

/

232
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Ans. 29

22
5. 3.1416 36 and

is not.

6. (a) 1

(b)

A

are rational numbers and r

(c)

(d)

/''
Ahswers to Exercises; pages B.10 - B.11:

3. (a)

(b)

(2i,

r_

7
1

-2i)

1-

( )

(d)

(0, +
e

4. (a) (-1, 1)

. 1

7
. 2.11

3i, -3i)

(e) (10, 0)

(b) (4, 4) (e) (-7, -19)

(c) (-7, 19) (g) (-4,110)

(d) 13:16, (h) (6, 42)

Answers to Exercises; page C.6:

11.

0

2. The set of transcendental numbera is not closed under

addition, multiplication or division.



e

The answer is 'dyes u
.

let us accept without proof the fact that corresponding to each

C.3

We arrive at this result as follows: First,

algebraic number A there is a unique polynomial equation of lowest
k

degree n such that A ds a solution of the equation.

For example, if A is the rational number P- there is a unique.

equation of first degree, namely qx - p = C, which is satisfied by

A. If A = VT, there is a unique nth degree equation, xn - a = 0,
-

which is satisfied by A. In general we would follow the line of

reasoning used in the following example. Cdnsider the algebraic

f-13 +number
2

Then 2x-i- 13.= V/1E7, and 4x2 52x 169 = 3,15; thus

2
2x +.26x + 27 = 0

is he4Pdblynomia equation of lowest degree, namely 2, whose solu-

tiOn is -33 -4-

2
,T.TT

. We see that this is thelowestivdegree

becausewe must square both members of the equation to obtain a

Polynomial equation.
?

Next, we define the index of the polynomial equation

a
n
xn+ an-1xb 1+ + a

1
K + a

0
= 0

to be the positive integer

'h = n + lanl + + + Lail + laol

Now for each positive integer h there is a finite number of polyno- ,

mial equations having index h. For example, there is exactly one,

equation with index h = 2, namely, xt, 0.

Theine Mg' exactly If equations with index

2x = 0, x + 1 = 0) 1 = 0, x = 0.

a


